Download this article in .PDF format
This file type includes high resolution graphics and schematics.

In summary, the proposed downconversion mixer achieves a 3-dB bandwidth of 0.6 to 11.0 GHz, with maximum CG of 11.3 dB and minimum NF of 9.5 dB. Fabricated with a commercial 0.18-μm silicon CMOS process, the low-power mixer hits a 1-dB compression point of -15 dBm with IIP3 of -5 dBm, while consuming only 0.71 mW from a +0.7-VDC supply. It is well suited for frequency conversion in battery-powered, UWB communications devices.

Acknowledgements

This work was supported in part by the Open Fund Project of Key Laboratory in Hunan Universities (No. 12K012). The authors would also like to thank the anonymous reviewers for their invaluable suggestions, which helped improve the quality of the article.

Jian Liu, M.S. Degree Candidate

Chunhua Wang, Professor, Doctoral Supervisor

College of Information Science and Engineering, Hunan University, Changsha 410082, Hunan Province, People’s Republic of China; e-mail: ljxz1987@163.com.

References

1. G. Roberto Aiello and Gerald D. Rogerson, “Ultra-wideband Wireless Systems,” IEEE Microwave Magazine, June 2003, pp. 36-47.

2. K.-H. Liang and H.-Y. Chang, “0.5-6 GHz low-voltage low-power mixer using a modified cascade topology in 0.18-μm CMOS technology,” IET Microwaves, Antennas & Propagation, Vol. 5, No. 2, 2011, pp. 167-174.

3. M.J. Deen, R. Murji, A. Fakhr, N. Jafferali, and W.L. Ngan, “Low-power CMOS integrated circuits for radio frequency applications,” IEE Proceedings on Circuits, Devices, and Systems, Vol. 152, No. 5, October 2005, pp. 509-522.

4. M.M. Reja, K. Moez, and I. Filanovsky, “A Novel 0.6-V CMOS Folded Gilbert-Cell Mixer for UWB Applications,” IEEE International SOC Conference, September 17-20, 2008, pp. 169-172.

5. M. Tavassoli, E. Kargaran, S. Izadpanah Tous, and H. Nabovati, “Design of 0.5-V, 1.28-mW CMOS UWB mixer using the body effect,” in IEEE 55thInternational Midwest Symposium on Circuits and Systems (MWSCAS), August 5-8, 2012, pp. 202-205.

6. Chih-Chun Tang, Wen-Shih Lu, Lan-Da Van, and Wu-Shiung Feng, “A 2.4-GHz CMOS Down-Conversion Doubly Balanced Mixer with Low Supply Voltage,” in IEEE International Symposium on Circuits and Systems (ISCAS), Vol. 4, May 6-9, 2001, pp. 794-797.

7. J.-D. Chen, Z.-M. Lin, and J.-S. Row, “A 2-GHz low-power down-conversion mixer in 0.18 μm CMOS technology,” IEICE Transactions on Electronics, Vol. E91-C, No. 1, January 2008, pp. 64-71.

8. H. Lee and S. Mohammadi, “A 500-μW, 2.4-GHz CMOS Subthreshold Mixer for Ultra Low Power Applications,” IEEE RFIC Symposium, June 3-5, 2007, pp. 328-328.

9. C. Hermann, M. Tiebout, and H. Klar, “A 0.6-V, 1.6-mW Transformer-Based 2.5-GHz Downconversion Mixer With +5.4-dB Gain and -2.8-dBm IIP3 in 0.13-μm CMOS,” IEEE Transactions on Microwave Theory & Techniques, Vol. 53, No. 2, February 2005, pp. 488-495.

10. V. Vidojkovic, A. van der Tang, A. Leeuwenburgh, and A.H.M. van Roermund, “A Low-Voltage Folded-Switching Mixer in 0.18 μm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 6, June 2005, pp. 1259-1264.

11. Eric A.M. Klumperink, Simon M. Louwsma, Gerard J.M. Wienk, and Bram Nauta, “A CMOS Switched Transconductor Mixer,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 8, August 2004, pp. 1231-1240.

12. Myoung-Gyun Kim, Hee-Woo An, Yun-Mo Kang, Ji-Young Lee, and Tae-Yeoul Yun, “A Low-Voltage, Low-Power, and Low-Noise UWB Mixer Using Bulk-Injection and Switched Biasing Techniques,” IEEE Transactions on Microwave Theory & Techniques, Vol. 60, No. 8, August 2012, pp. 2486-2493.

13. Jinsung Park, Chang-Ho Lee, Byung-Sung Kim, and J. Laskar, “Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers,” IEEE Transactions on Microwave Theory & Techniques, Vol. 54, No. 12, December 2006, pp. 4372-4380.

14. Kung-Hao Liang, Hong-Yeh Chang, and Yi-Jen Chan, “A 0.5-7.5 GHz Ultra Low-Voltage Low-Power Mixer Using Bulk-Injection Method by 0.18-μm CMOS Technology,” IEEE Microwave & Wireless Component Letters, Vol. 17, No. 7, July 2007, pp. 531-533.

15. G. Kathiresan and C. Toumazou, “A Low Voltage Bulk Driven Downconversion Mixer Core,” IEEE International Symposium on Circuits & Systems, Vol. 2, July 1999, pp. 598-601.

16. Hong Mo Wang, “A 1-V Multigigahertz RF Mixer Core in 0.5-μm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 12, December 1998, pp. 2265-2267.

17. M. Kim, J. Lee, and T. Yun, “Low-noise and high-gain mixer combining switched-biasing and current-bleeding techniques,” Electronics Letters, Vol. 48, No. 23, November 2012, pp. 1476-1478.

18. Eric A.M. Klumperink, Sander L.J. Gierkink, Arnoud P. van der Wel, and Bram Nauta, “Reducing MOSFET 1/f Noise and Power Consumption by Switched Biasing,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 7, July 2000, pp. 994-1001.

19. F. Assaderaghi, D. Sinitsky, S.A. Parke, J. Bokor, P.K. Ko, and Hu Chenming, “Dynamic Threshold-Voltage MOSFET (DTMOS) for Ultra-Low Voltage VLSI,” IEEE Transactions on Electron Devices, Vol. 44, No. 3, March 1997, pp. 414-422.

Download this article in .PDF format
This file type includes high resolution graphics and schematics.