Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Many companies with expansive lines of hardware measurement instruments also offer software tools to work with those instruments. For example, the RFXpress® software from Tektronix simplifies the creation of complex test signals when used with the company’s arbitrary waveform generators. In addition, the SignalVu-PC software was created for signal analysis with the company’s DPO/DSA/MSO series of digital storage oscilloscopes to capture and analyze complex signals, including audio through analog and digital modulated RF/microwave frequencies.

The software includes a number of useful demonstrations of signals used for radar and wideband-communications systems, helping operators to understand how the controls of the hardware instruments relate to the analysis of the captured signals. The software—which can work with pulsed, modulated, and frequency-hopped signals—can also coordinate calculations on acquired signals (for example, as many as 21 measurements per pulse for as many as 10,000 pulses).

Anritsu Co. offers a wide range of measurement software tools for both benchtop and its portable measurement instruments. The company’s Wireless Remote Tools™ software allow remote control of portable instruments, such as the SiteMaster portable spectrum analyzers, over an wired Ethernet or wireless connection for remote monitoring of signals and installations. The firm’s Master Software Tools (MST) provide multiple functions for analysis of captured signal traces, as might be needed for spectrum monitoring and RF interference analysis. Such software enables instruments—like the model MW82119A PIM Master for passive-intermodulation (PIM) measurements—to be installed at the top of a wireless communications tower, and for measurements to be made either remotely or on an automated schedule.

Version 3 of the MT910 Automated Mobile Test System Software (AMTS) from Maury Microwave is a standalone measurement program that works with the firm’s model MT98x automated impedance tuner (to set impedances other than 50 Ω) and signal generation and analysis equipment. It automates the testing of mobile telephones in transmit and receive modes, evaluate outputs power, and receives sensitivity as functions of VSWR, magnitude, and phase, respectively. The software enables automated testing over a wide range of channels and frequencies, power levels, and battery voltages, and is written to work with a wireless communications test station from Agilent Technologies or from Rohde & Schwarz.

The software coordinates measurements that can provide insights into what level of antenna mismatch is acceptable for a particular mobile telephone design—assuming that the telephone design meets minimum performance requirements for a defined set of VSWR values and voltage conditions—and whether the components within the telephone are acceptable, or need to be redesigned or replaced.

Focus Microwaves also combines test software with its automated impedance tuners to provide innovative measurement solutions. The firm’s Microsoft Windows-based WinPower software controls its impedance tuners to achieve any calibrated or interpolated impedance and can handle a variety of measurement routines, including for peak output power, output power at 1-dB compression, intermodulation distortion (IMD), error vector magnitude (EVM), and power-added efficiency. The software coordinates continuous impedance tuning and is fueled with hundreds of instrument drivers for compatibility with a large number of hardware instruments. The software can integrate with a wide range of other software tools, including LabVIEW, Matlab™, Visual Basic™, and VEE™ software using Direct Data Exchange™ (DDE).

In terms of analyzing noise, the firm’s WinNoise software facilitates noise measurements process, also with the aid of an impedance tuner. The measurement software can determine a number of noise parameters, including minimum noise figure and equivalent noise resistance.

Measurement software can provide an assist for those faced with large numbers of measurements, such as during on-wafer device characterization. The ACS semiconductor characterization software from Keithley Instruments, for example, supports a wide range of semi-automatic and fully automatic wafer probers, to make automated measurements across an entire wafer or to control measurements on individual devices on a wafer. Written for use with the company’s instrumentation, the software sports a straightforward graphical user interface (GUI) so that even new users can feel comfortable performing complicated on-wafer measurements.

To simplify complex measurements on integrated circuits (ICs), Auriga Microwave has developed their Auriga WIDE™ software for use with various test systems, including the firm’s own CTS-4 component test system for characterizing commercial and military modules, such as transmit/receive (T/R) modules and cellular communications base-station modules. The software promises ease of programming and straightforward creation of test scripts using the company’s Wizard-based integrated development environment.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.