Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

This work was supported by the National Natural Science Foundation of China (Grant No. 61006026).

Ziqiang Yang, Associate Professor

Shaoteng Chi, Master’s Degree Candidate

Tao Yang, Professor

Yu Liu, Associate Professsor

Hao Peng, Ph.D.

School of Electronic Engineering, University of Electronic Science and Technology of China,

Chengdu 611731, People’s Republic of China

References

1. S.H. Weng, W.C. Wang, H.Y. Chang, C.C. Chiong, and M.T. Chen, “A Cryogenic 30-50 GHz balanced low noise amplifier using 0.15-μm MHEMT process for radio astronomy applications,” in IEEE 2012 International Symposium on RFIT, 2012, pp. 177-179.
2. D.M. Kang and H.S. Yoon, “80-110 GHz MMIC amplifiers using a 0.1-μm GaAs-based mHEMT technology,” Microwave and Optical Technology Letters, Vol. 54, No. 8, 2012, pp. 1978-1982.
3. C.M. Hu, C.Y. Huang, C.H. Chu, D.C. Chang, Y.Z. Juang, J. Gong, C.F. Huang, and C.M. Chin, “A 60-GHz three-stage low noise amplifier using 0.15-μm gallium-arsenide pseudomorphic high-electron mobility transistor technology,” Microwave and Optical Technology Letters, Vol. 54, No. 2, 2012, pp. 329-332.
4. Y.S. Lin and S.S. Wong, “A 60-GHz low-noise amplifier for 60-GHz dual-conversion receiver,” Microwave and Optical Technology Letters, Vol. 51, No. 4, 2009, pp. 885-891.
5. W.R. Deal, M. Biedenbender, P. Liu, J. Uyeda, M. Siddiqui, and R. Lai, “Design and Analysis of Broadband Dual-Gate Balanced Low-Noise Amplifiers,” IEEE Journal of Solid-State Circuits, Vol. 42, No. 10, 2007, pp. 2107-2115.
6. P.J. Riemer, B.R. Buhrow, J.B. Hacker, J. Bergman, B. Brar, B.K. Gilbert, and E.S. Daniel, “Low-power W-band CPWG InAs/AlSb HEMT low-noise amplifier,” IEEE Microwave and Wireless Components Letters, Vol. 16, No. 1, 2006, pp. 40-42.
7. J.B. Hacker, J. Bergman, G. Nagy, G. Sullivan, C. Kadow, L. Heng-Kuang, A.C. Gossard, M. Rodwell, and B. Brar, “An ultra-low power InAs/AlSb HEMT Ka-band low-noise amplifier,” IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 2004, pp. 156-158.
8. B. Aja, M.L. de la Fuente, J.P. Pascual, M. Detratti, and E. Artal, “GaAs pHEMT broadband low-noise amplifier for millimeter-wave radiometer, ” Microwave and Optical Technology Letters, Vol. 39, No. 6, 2003, pp. 475-479.
9. A.F. Osman and N.M. Noh, “Wideband LNA design for SDR radio using balanced amplifier topology,” in 4th Asia Symposium on Quality Electronic Design, 2012, pp. 86-90.
10. I. Malo-Gomez, J. D. Gallego-Puyol, C. Diez-Gonzalez, I. Lopez-Fernandez, and C. Briso-Rodriguez, “Cryogenic Hybrid Coupler for Ultra-Low-Noise Radio Astronomy Balanced Amplifiers,” Microwave Journal of Theory and Techniques, Vol. 57, No. 12, 2009, pp. 3239-3245.
11. Wantcominc.com, “Merits of balanced amplifier,” Application Note AN-101.
12. R.M. Osmani, “Synthesis of Lange Couplers,” IEEE Transactions on Microwave Theory & Techniques, Vol. 29, No. 2, 1981, pp. 168-170.
13. W.P. Ou, “Design equations for an interdigitated directional coupler,” IEEE Transactions on Microwave Theory & Techniques, Vol. 23, No. 2, 1975, pp. 253-255.
14. Y.H. Yu, Y.S. Yang, and Y.J. Chen, “A Compact Wideband CMOS Low Noise Amplifier With Gain Flatness Enhancement,” IEEE Journal on Solid-State Circuits, Vol. 45, No. 3, 2010, pp. 502-509.
15. D.H. Zhang, W.R. Zhang, D.Y. Jin, H.Y. Xie, X. Zhao, B.Y. Liu, and Y.Q. Zhou, “The feedback technology for gain flatness and stability of UWB LNA,” 2011 International Conference on Electric Information and Control Engineering, pp. 6260-6263 (2011).
16. G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.