Mwrf 1569 Ieeestandardwebpromo 0

IEEE Unveils Micromechanical-Sensor Standard

Sept. 24, 2014
A new IEEE standard sets performance parameters for sensors used in microelectromechanical systems (MEMS) targeting IoT products.

As sensors increasingly pervade devices, vehicles, and networks, linking them to the Internet of Things (IoT), standards for performance must be formulated to help ensure compatibility. IEEE’s new standard for defining the functionality of micromechanical sensors, IEEE 2700-2014, provides a common methodology for microelectromechanical systems (MEMS) in the consumer electronics industry. It includes specifications for a wide range of components, including accelerometers, gyroscopes, barometers, and proximity sensors.

IEEE 2700-2014 seeks to support innovation in sensor types for vendors, including original equipment manufacturers (OEMs) and independent software vendors (ISVs), particularly integration of multiple sensors in a device. It provides the parameters needed to define sensor performance and eases non-scalable integration challenges and burdens across manufacturers. With a broadening variety of sensor types flooding the industry, the standard helps to specify terminology, units, conditions, and limits across the board to provide common ground.

MEMS have already found their way into numerous applications, including smartphone motion detectors and triggers for vehicle-collision airbags. However, with the surge in IoT-connected products such as e-health, connected cars, and augmented reality, MEMS implementation will undoubtedly mushroom. The IEEE Standards Association collaborated with members from the National Institute of Standards and Technology (NIST), the MEMS Industry Group, and the IEEE Electron Devices Society to develop the standard.

Sponsored Recommendations

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...