Antenna-In-Package Forges Interconnection At 60 GHz

Feb. 19, 2010
TO ENABLE VERY-HIGH-DATA-RATE applications, the IEEE 802.15.3c standards group is defining specifications for 60-GHz radios that use only a few gigahertz of unlicensed spectrum. Typically, those radios have been designed by assembling several ...

TO ENABLE VERY-HIGH-DATA-RATE applications, the IEEE 802.15.3c standards group is defining specifications for 60-GHz radios that use only a few gigahertz of unlicensed spectrum. Typically, those radios have been designed by assembling several monolithic microwave integrated circuits (MMICs) in gallium-arsenide (GaAs) semiconductor technology. Yet a recently proposed antenna, which targets highly integrated 60-GHz radios, is specifically designed to exhibit capacitive input impedance that complements low-cost wirebonding packaging and assembly techniques. It was developed by Y.P. Zhang and M. Sun from Nanyang Technological University, K.M. Chua and L.L. Wai from Singapore Institute of Manufacturing Technology, and Duixian Liu from the IBM T.J. Watson Research Center.

At millimeter-wave frequencies, one challenge is the realization of a low-loss interconnection between a radio chip and antenna using a wirebonding technique. Although this antenna-inpackage (AiP) design may provide an answer, it also invites the risk of the antenna coupling to the radio chip. In the worst-case scenario, in which no guard ring and pattern grounded shield are used for the inductor and the distance between the inductor and antenna is the shortest allowed by the on-chip layout rule, coupling from the in-package antenna to the on-chip inductor was lower than 27.5 dB at 60 GHz.

The quasi-cavity-backed, guard-ring-detected, substrate-material-modulated slot antenna is implemented in a thin cavity-down, ceramic-ballgrid- array (CBGA) package in low-temperatureco- fired-ceramic (LTCC) technology. It offers an impedance bandwidth of 59 to 65 GHz with 94 percent estimated efficiency. See "Antenna-in- Package Design for Wirebond Interconnection to Highly Integrated 60-GHz Radios," IEEE Transactions On Antennas And Propagation, October 2009, p. 2842.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.