Buck Converter Drops Static Power To 217 nW

Aug. 9, 2012
In many medical monitoring systems, each patient wears several sensors.

In many medical monitoring systems, each patient wears several sensors. Those sensor nodes transmit specific physiological signals in a group of small monitoring systems. The sensed data is collected wirelessly by the central health server. Because each sensor node works as a micro system, it must be sustained for a long time without changing the battery. To achieve high conversion efficiency over a wide load range, a battery-free, nano-power buck converter with dynamic on/off time (DOOT) control was recently proposed by Ming-Wei Lee from Taiwan’s Industrial Technology Research Institute (ITRI) together with Chen-Chih Huang and Yin-Hsi Lin from Realtek Semiconductor Corp. and Tzu-Chi Huang, Chun-Yu Hsieh, Yao-Yi Yang, Yu-Huei Lee, Yu-Chai Kang, and Ke-Horng Chen from National Chiao Tung University.

Their DOOT control can predict the on/off time at different input voltages without a power-consuming zero-current-detection (ZCD) circuit. To adapt to the fluctuations in a harvesting system, the proposed α-calibration scheme guarantees accurate ZCD over process, voltage variation, and temperature (PVT) in the DOOT.

For its part, the adaptive-phase-lead (APL) mechanism improves the inherent propagation delay that arises due to a low-power and non-ideal comparator. As a result, load regulation is improved by as much as 30 mV. In addition to consuming low static power, the nano-power bias circuit generates a 1-V reference voltage.

The test chip was implemented in 0.25-μm CMOS with a die area of 0.39 mm2. Experimental results showed 95% peak efficiency, static power of 217 nW, and load regulation of 0.1 mV/mA. See "A Battery-Free 217 nW Static Control Power Buck Converter for Wireless RF Energy Harvesting with α-Calibrated Dynamic On/Off Time and Adaptive Phase Lead Control," IEEE Journal Of Solid-State Circuits, April 2012, p. 852.

Sponsored Recommendations

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...