Mixed-Signal Baseband IC Cuts Power Consumption At 60 GHz

Aug. 14, 2012
A lot of attention is being given to the 7-GHz bandwidth available in the 60-GHz band—largely with the hope of achieving multi-gigabit-per-second wireless links.

lot of attention is being given to the 7-GHz bandwidth available in the 60-GHz band—largely with the hope of achieving multi-gigabit-per-second wireless links. But today’s 60-GHz radios often are modeled on their lower-frequency brethren. For instance, they rely on orthogonal frequency division multiplexing (OFDM), which demands relatively high circuit and signal-processing complexity. This results in system partitioning and baseband power dissipation of roughly 1 W. A more optimal approach is the low-power, mixed-signal, adaptive 60-GHz baseband-radio integrated circuit (IC) that has been presented by Antoine Frappé from France’s IEMN-ISEN together with Chintan Thakkar, Lingkai Kong, Kwangmo Jung, and Elad Alon from the University of California at Berkeley.

This baseband device, which is implemented in 65-nm CMOS, operates at 10 Gb/s with a bit error rate (BER) of better than 10−12 while consuming either 53 mW (with adaptation on) or 45 mW (without adaptation). The key is its use of relatively low-dynamic-range analog signal processing. The baseband circuit integrates variable-gain amplifiers, an analog phase rotator, and more. The core signal-processing circuits consume just 29 mW. See "A 10 Gb/s 45 mW Adaptive 60 GHz Baseband in 65 nm CMOS," IEEE Journal Of Solid-State Circuits, April 2012, p. 952.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.