Feedback

June 13, 2008
How can metamaterials be viable for modulus of refractive index |n| group =Vphase = 3c (speed of light)? This can be seen where: dn/dλ = 0 for Vg = cX where λ = wavelength in vacuum This also invalidates signal and energy ...

How can metamaterials be viable for modulus of refractive index |n| group =Vphase
= 3c (speed of light)?

This can be seen where:
dn/dλ = 0
for Vg = cX
where λ = wavelength in vacuum

This also invalidates signal and energy velocity. We now have much literature with curves that correspond to the profoundly researched anomalous dispersion of Sommerfeld Brillouin- Stratton, (modulus of n

All the demonstrations that are phased arrays of Hertzian dipoles can bend a beam in any direction you wish. (Heinrich Hertz invented the split ring resonator also). There are also problems with energy density in both classical and quantum electrodynamics. There are increasing numbers of papers in which scientists claim to have proven extraordinary phenomena by applying the concept of group velocity to the anomalous dispersion of waves.

Two of the greatest wave theorists of all time, Arnold Sommerfeld and Lon Brillouin, have dealt with the subject. In separate papers, Sommerfeld and Brillouin wrote that, in anomalous dispersion, the group velocity cannot be the signal velocity.1 Indeed, in anomalous dispersion, the group velocity goes through both negative and positive infinite values. It also goes through values greater than the speed of light (as does the phase velocity).2

Metamaterials and the possibility of negative refraction are interesting, but before the industries based on classical and quantum electrodynamics can take them seriously, these questions must be addressed. In anomalous dispersion of Sommerfeld Brillouin-Stratton (modulus of n c, and/or traveling backward, in a way analogous to the old chestnut about the speed of intersection of two searchlight beams. The published values of +0.9 > n > 0.6 cannot be physicalespecially where Vgroup = Vphase equal speeds greater than light, thus invalidating signal and energy velocity.

Dr. M.J. Lazarus
University of Lancaster
e-mail: [email protected]

REFERENCES
1. A. Sommerfeld, Annalen der Physik 44, 177 (1914); L. Brillouin, Annalen der Physik 44, 203 (1914). For a lucid English-language digest of the two papers, see ref. 2, p. 334.
2. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941), p. 339, Fig. 63.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.