Quick Finite Elements for Electromagnetic Waves, 2nd ed.

Feb. 18, 2011
ELECTROMAGNETIC (EM) simulation tools have proven invaluable in modeling and designing a wide range of RF and microwave components, including couplers and filters. The use of finite-element analysis (FEA) for analyzing the two-dimensional ...

ELECTROMAGNETIC (EM) simulation tools have proven invaluable in modeling and designing a wide range of RF and microwave components, including couplers and filters. The use of finite-element analysis (FEA) for analyzing the two-dimensional (2D) and three-dimensional (3D) EM fields around a circuit can provide invaluable insight into the behavior of EM fields in and around different microwave circuits and structures, including microstrip, stripline, and coplanar-waveguide (CPW) circuits.

Those wishing to know more about EM and FEA techniques have an array of texts from which to choose, but one of the classic texts is Quick Finite Elements for Electromagnetic Waves by Giuseppe Pelosi of the University of Florence, Roberto Coccioli of Inphi Corporation, and Stefano Selleri of the University of Florence. Originally published by Artech House in 1998, the book has now been "upgraded" to its second edition, with new material on the 2D and 3D finite-element examination of various resonant cavities.

The goal of the original text was to simplify the use of finite-element methods (FEMs) when designing and analyzing microwave circuits and structures. It provided essential theory on understanding FEM and enough background to get started with a basic FEM analysis.

The latest version of the book is divided into three parts. The first covers 2D problems. The second advances to 3D problems. The last part of the book is devoted to a bibliography of collected FEM papers and books to help students grow their knowledge of practical FEM analysis for microwave design.

The 289-page book devotes chapters to different microwave transmissionline technologies and structures, including shielded microstrip lines, waveguide, and antennas, and advances to the study of three-dimensional analysis of resonant cavities. Part 2 of the text is completely new to this edition, with three chapters devoted to finiteelement modeling (FEM) of resonant cavities and waveguide.

The text is accompanied by a CDROM containing easy-to-use finite-element software based on Matlab (for the problems in Part 1 of the book) and FORTRAN (for problems in part 2) source code. The Matlab code is designed to be as version-independent as possible, and can be readily supplemented by commercial versions of this popular mathematical analysis software from The Mathworks. This CD-ROM software is compatible with various "freeware" post-processing tools available from the Internet, for a low-cost suite of software solutions to common EM and high-frequency design problems.

ARTECH HOUSE, 685 Canton Street, Norwood, MA 02062; (781) 769-9750, www.artechhouse.com.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.