RF Immunity Testing Helps To Maintain Quality Performance

July 13, 2007
Unwanted signals are proliferating in part because of the popularity of GSM cell phones. Such RF signals can disrupt the operation of electronic circuits without adequate RF noise-rejection capabilities. To guarantee the satisfactory operation ...

Unwanted signals are proliferating in part because of the popularity of GSM cell phones. Such RF signals can disrupt the operation of electronic circuits without adequate RF noise-rejection capabilities. To guarantee the satisfactory operation of electronic circuits in the presence of RF interference, RF-immunity testing has become critical. MAXIM (Sunnyvale, CA) examines this topic in a white paper titled, "A Measurement Technique for Determining RF Immunity."

Many of today's cell phones are based on the time-division-multiple-access (TDMA) standard. This multiplexing scheme modulates the high-frequency carrier by pulsing it off and on at a rate of 217 Hz. An RF-susceptible integrated circuit (IC) may demodulate that carrier and reproduce the 217-Hz signal along with its harmonic frequencies. Most of these frequencies fall within the audio band, thereby generating an audible buzz.

To prevent such issues, testing should subject the circuit to an RF environment that is comparable to the one that it will encounter during normal operation. The note details a general technique for measuring the RF noise-rejection capability of an IC board. The board is subjected to controlled levels of RF. The resulting standard structured test methodology establishes repeatable results that can be used in qualitative analysis. Designers can then select the ICs and circuits that are most resistant to RF noise.

To test RF susceptibility, the device-under-test (DUT) should be placed near the energy field generated by an operating cell phone. For accurate and repeatable test results, however, an RF anechoic test chamber will produce controlled RF fields that are comparable to those generated by a mobile phone. The note concludes with the test results for two dual operational amplifiers.

MAXIM Integrated Products, Inc., 120 San Gabriel Dr., Sunnyvale, CA 94086; (408) 737-7600, FAX: (408) 737-7194, Internet: www.maxim-ic.com

Sponsored Recommendations

Frequency Modulation Fundamentals

March 14, 2024
The development of crystal-clear FM communications was an innovation of genius and toil. Utilized today in applications such as radar, seismology, telemetry and two-way radios...

44 GHz Programmable Signal Generator

March 14, 2024
The Mini-Circuits SSG-44G-RC is a 0.1 to 44 GHz signal source with an RF output range of -40 to +17 dBm with fine resolution. This model supports CW and pulsed (? 0.5 ?s) outputs...

Webinar: Introduction to OTA Measurement for mmWave and Sub-THz

Feb. 19, 2024
Join Jeanmarc Laurent, a leading expert from MilliBox, for an exclusive live webinar showcasing a complete Over-the-Air (OTA) testing system setup. In this immersive session, ...

Using a CMT VNA with Socket Server

Feb. 19, 2024
This application note describes use of a software application CMT Socket Server which is distributed and supported by Aphena Ltd. Please email [email protected] regarding purchase...