Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

1. Henk M.J. Boots, Gerben Doornbos, and Anco Heringa, “Scaling of characteristic frequencies in RF CMOS,” IEEE Transactions on Electron Devices, Vol. 51, No. 12, December 2004, pp. 2102-2108.

2. Yong-Il Kwon, Sang-Gyu Park, Ta-Joon Park, Koon-Shik Cho, and Hai-Young Lee, “An Ultra Low-Power CMOS Transceiver Using Various Low-Power Techniques for LR-WPAN Application,” IEEE Transactions on Circuits and Systems-I: Regular Papers, Vol. 59, No. 2, February 2012, pp. 324-336.

3. I. Nam, K. Choi, J.H. Lee, H.K. Cha, B.I. Seo, K. Kwon, and K. Lee, “A 2.4-GHz low-power low-IF receiver and direct-conversion transmitter in 0.18-μm CMOS for IEEE 802.15.4 WPAN applications,” IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 4, April 2007, pp. 682–689.

4. Lai, J.-T., Y.-S. Lin, C.-L. Lu, and H.-R. Chuang, “A 3-5-GHz, low-voltage, high-isolation transformer-based CMOS mixer for UWB applications,” Proceedings of the 3rd International Conference on Innovative Computing Information and Control, June 2008, pp. 238-241.

5. Sandhya Samadhiya and Rajesh Khatri, “Design and Analysis of Low-power, Low voltage, 3.5-10-GHz Folded Gilbert-cell Mixer for UWB Application,” 2011 International Conference on Multimedia, Signal Processing and Communication Technologies, 2011, pp. 204-207.

6. Hung-Che Wei, Chih-Lung Hsiao, and Ro-Min Weng, “A broadband low power high isolation double-balanced subharmonic mixer for 4G applications,” Progress In Electromagnetics Research, Vol. 138, 2013, pp. 143-155.

7. Hsieh-Hung Hsieh, Huan-Sheng Chen, et al., “Experimental 5-GHz RF Frontends for Ultra-Low-Voltage and Ultra-Low-Power Operations,” IEEE Transactions on VLSI Systems, Vol. 19, No. 4, April 2011, pp. 705-709.

8. H.C. Wei, R.M. Weng, and S.Y. Li, “A broadband high linearity and isolation down-conversion mixer for WiMAX applications,” Journal of Electromagnetic Waves and Applications, Vol. 23, Nos. 11-12, 2009, pp. 1555-1565.

9. Shan He and Carlos E. Saavedra, “An Ultra-Low-Voltage and Low-Powerx2 Subharmonic Downconverter Mixer,” IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 2, February 2012.

10. S.K. Hampel, O. Schmitz, M. Tiebout, and I. Rolfes, “Inductorless low-voltage and low-power wideband mixer for multistandard receivers,” IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 5, 2010, pp. 1384-1390.

11. Hwann-Kaeo Chiou and Hung-Ting Chou, “A 0.4 V Microwatt Power Consumption Current-Reused Up-Conversion Mixer,” IEEE Microwave and Wireless Components Letters, Vol. 23, No. 1, January 2013.

12. C.-C. Tang, W.-S. Lu, L.-D. Van, and W.-S. Feng, “A 2.4-GHz CMOS down-conversion doubly balanced mixer with low supply voltage,” in Proceedings of the IEEE Interational Symposium on Circuits & Systems (ISCAS), Vol. 4, May 2001, pp. 794-797.

13. C. Hermann, M. Tiebout, and H. Klar, “A 0.6-V 1.6-mW transformer-based 2.5-GHz downconversion mixer with +5.4-dB gain and -2.8-dBm IIP3 in 0.13-μm CMOS,” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 2, February 2005, pp. 488-495.

14. L. Liu and Z. Wang, “Analysis and design of a low-voltage RF CMOS mixer,” IEEE Transactions on Circuits & Systems II, Vol. 53, No. 3, March 2006, pp. 212-216.

15. J.-B. Seo, J.-H. Kim, H. Sun, and T.-Y. Yun, “A low-power and high-gain mixer for UWB systems,” IEEE Microwave and Wireless Components Letters, Vol. 18, No. 12, December 2008, pp. 803-805.

16. F.-C. Chang, P.-C. Huang, S.-F. Chao, and H. Wang, “A low power folded mixer for UWB systems applications in 0.18-μm CMOS technology,” IEEE Microwave and Wireless Components Letters, Vol. 17, No. 5, May 2007, pp. 367-369.

17. H.-H. Hsieh and L.-H. Lu, “Design of ultra-low-voltage RF frontends with complementary current-reused architectures,” IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 7, July 2007, pp. 1445-1458.

18. H. Khatri, P.S. Gudem, and L.E. Larson, “Distortion in current commutating passive CMOS downconversion mixers,” IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 11, 2009, pp. 2671-2681.

19. C. Park, H. Seo, and B. Kim, “A noise optimized passive mixer for charge-domain sampling applications,” Journal of Electromagnetic Waves and Applications, Vol. 23, Nos. 14 and 15, 2009, pp. 1909-1917.

20. K.-H. Liang, H.-Y. Chang, and Y.-J. Chan, “A 0.5-7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-μm CMOS technology,” IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, July 2007, pp. 531-533.

21. C.-L. Kuo, B.-J. Huang, C.-C. Kuo, K.-Y. Lin, and H.Wang, “A 10-35-GHz low power bulk-driven mixer using 0.13-μm CMOS process,” IEEE Microwave and Wireless Components Letters, Vol. 18, No. 7, July 2008, pp. 455-457.

22. B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, 2001.

23. Heng Zhang and Sánchez-Sinencio E., “Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, 2011, pp. 22-36.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.