High-Power RF Semiconductor Market To Approach $1 Billion By 2012

Jan. 23, 2008
NEW YORK, NY The high-power RF semiconductor market is expected to approach $1 billion USD by 2012 according to a new research study from ABI Research. At present, the market is driven by a number of well-established transistor devices, such ...

NEW YORK, NY The high-power RF semiconductor market is expected to approach $1 billion USD by 2012 according to a new research study from ABI Research. At present, the market is driven by a number of well-established transistor devices, such as silicon laterally diffused metal-oxide-semiconductor (LDMOS) devices, and several emerging RF power technologies, such as silicon-carbide (SiC) and gallium-nitride (GaN) devices. In order to understand the needs of RF power semiconductor markets in several years, research director Lance Wilson guided a detailed five-year forecast of key market areas in the study "RF Power Semiconductor Devices." As Wilson predicts, "The shape of the industry five years hence will depend on three critical questions. At the manufacturing level, will the introduction of gallium nitride and silicon carbide RF power devices mean the demise of Si LDMOS? With mobile/3G infrastructure markets in decline, will they continue to drive the RF power semiconductor industry as they have in the past? Will the market segments outside of wireless infrastructure shore up this market space?"

In an attempt to provide answers, Wilson and ABI Research examined markets for RF power semiconductors with output levels above 5 W at frequencies through 3.8 GHz. The study sizes the RF power semiconductor market into 6 usage-based segments and 24 sub-segments, providing a highly detailed, market-driven analysis. The six major segments are: wireless infrastructure, military, industrial-scientific-medical (ISM ) applications, broadcast, commercial, avionics, and noncellular communications applications.

According to Wilson, the study was needed because "This market has been overshadowed for many years by the wireless infrastructure sector. Now that new 3G/cellular wireless infrastructure deployments are declining, there is a paucity of information about how the rest of the industry is faring. This study puts wireless infrastructure which is well understood into the context of the rest of these markets." The "RF Power Semiconductor Devices" study forms part of two ABI Research services, the RF Power Devices Research service and the Wireless Semiconductors Research Service.

For additional information, visit the ABI Research website at www.abiresearch.com.

Sponsored Recommendations

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...