Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

JD: Does the congestion of electromagnetic interference (EMI) hamper WPT technologies?  

HZ: As discussed earlier, different WPT technologies utilize different spectrum segments. All have to follow the guidance set by the FCC in the United States and international legislative bodies elsewhere. Thankfully, wireless power is almost by definition un-encoded. When properly designed, it can have little/manageable impact on encoded communication in the same spectrum.

JD: What are the safety concerns for WPT technologies, and how are they being addressed?

HZ: Safety concerns are paramount in the design of power systems—and even more so for wireless power systems, as the energy is not confined to the wires or components. The ability for the human body to absorb the energy presented by the WPT is a feature that impacts the maximum power levels. For instance, lower frequencies are absorbed less by human flesh. But the energy levels used are much higher (a car charger would require 7-kW power transfer, for example) and a small percentage loss would be large and potentially harmful.

JD: What technological leap forward would be the most advantageous for WPT technologies?

HZ: We believe that delivering safe, focused, and remote power is a huge leap of utility for users in consumer or industrial markets. Once WPT enters the market, it will ignite the imagination of product designers everywhere. We will see devices that serve us throughout our environment ranging from intelligent door handles to self-heating cups, displays on “inanimate” objects, and feedback from every device. The Internet genie will no longer be trapped in laptops and smartphones.

JD: Do you believe the WPT market will have room for both short-range (such as Rezence) and long-range (i.e., COTA) solutions?

HZ: Most of the wireless power standards, such as Rezence, are for charging mobile devices like cell phones, Bluetooth headsets, and the like. Their targets range from devices that require user attention to devices that are running out of power (something that is easy to know for a cell phone). But our homes are full of devices that have no visible or easily accessible battery indicators, such as security motion sensors, remote controls, clocks, flashlights, car key fobs, kids’ toys, etc. With such devices, people have generally let the batteries die first and then charged/replaced them.

The short-range technologies underneath the wireless-charging consortiums have great value in some vertical markets, where proximity power delivery is of benefit. Examples include electric-vehicle charging and robotics. All of these consortiums continue to demonstrate the importance and need to rapidly adopt a wireless power solution.  Yet I believe that this need goes far beyond simply charging a smartphone. It includes charging all types of devices throughout a home, which requires a longer-distance charging solution. In the end, we believe Cota-based systems will power the small devices while Rezence or similar technologies will power the larger, more power-hungry devices like blenders, toasters, and cars.

JD: Why did you pursue WPT technologies as an entrepreneurial path?

HZ: In 2002, while experimenting with phased-array transmissions, I discovered something extremely remarkable. In addition to transmitting data, the array could also transmit power. After years of experimentation and research, we filed our first patent in 2007. Shortly afterward, I began to assemble a team of RF engineers and the foundation for what we call “Cota” was designed. Since then, we have refined our designs and patented our inventions.

Whereas many inventions are derived out of necessity or market need, sometimes the best inventions are discovered by accident. We were not looking to solve a specific market need at the time. I feel that this ultimately freed our minds to the endless possibilities of the Cota technology, which go far beyond simply charging a phone. If you start from the market need, you are pushed to use and improve what is available on hand. This probably explains why WPT is still using 40+-year-old technology. Although breakthrough discoveries cannot be created within a certain time frame, they need to be pursued despite challenges.

JD: What has been your greatest success so far?

HZ: My greatest success so far has been our ability to demonstrate a real wireless power solution via our working prototype on the stage at TechCrunch Disrupt in fall 2013. We look forward to delivering our first commercially ready technology in the near future.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.