Mwrf 9708 Johanson Eseries Promo

High-Q Capacitors Rise to the Occasion

Oct. 19, 2018
One of Johanson Technology’s specialties is high-Q capacitors, such as the E-Series multi-layer caps targeted at high-power applications.

For many high-power RF applications, the “Q factor” of embedded capacitors is one of the most important characteristics in circuit design. Often expressed as a mathematic formula, the Q factor represents the efficiency of a given capacitor in terms of its rate of energy loss.

Although many low-power applications do not require consideration of the capacitor’s Q factor, energy losses can increase significantly at higher frequencies. That means performance issues can arise even in low-power circuits.

Johanson Technology addresses this issue for high-power applications by offering high-Q capacitors, which are characterized as having ultra-low equivalent series resistance (ESR). In addition to minimizing energy loss, the high-Q capacitors reduce thermal noise caused by ESR to assist in maintaining desired signal-to-noise ratios.

To achieve the lowest energy losses, Johanson leverages the lowest loss dielectrics, inks, and electrode options.  Although most low-cost commodity capacitors utilize nickel electrodes, it’s a poor conductor known for high loss at high frequencies.  

Silver and copper electrodes perform better for most high-Q applications. For the highest-power RF applications, silver electrodes are incorporated in Johanson’s E-Series multi-layer RF capacitors. These capacitors are available in EIA-standard 1111, 2525, and 3838 sizes.

The company offers high-Q MLCC capacitors in both horizontal and vertical electrode orientation configurations when mounted in tape-and-reels. Mounting capacitors in a vertical configuration can effectively extend the usable frequency range of capacitors.

For more information, contact Johanson Technology at (805) 389-1166, e-mail [email protected], or visit the website.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Can I Use the VNA Software Without an Instrument?

April 19, 2024
Our VNA software application offers a demo mode feature, which does not require a physical VNA to use. Demo mode is easy to access and allows you to simulate the use of various...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...