Image

GaN-on-Silicon is Ready for Space

March 14, 2017
GaN-on-silicon device technology has been tested as ready for space-based DC-to-DC power conversion applications.

Gallium-nitride (GaN) transistors are well known for their roles in RF/microwave amplification, but the active devices are also essential building blocks for high-speed power conversion and power supplies. Recent testing of GaN-on-silicon (GaN-on-Si) enhancement-mode devices by Imec, in collaboration with Thales Alenia Space Belgium, has revealed that these devices are well suited for space applications, where high doses of radiation can degrade device performance. Testing showed consistent performance before and after irradiation with heavy ions and neutrons, as typically found in space applications such as satellites.

The measurements offer strong evidence of the suitability of the GaN-on-Si devices for space-based power conversion applications. Testing was conducted on Imec’s 200-mm GaN-on-Si process devices, which showed good radiation hardness and no permanent degradation in transistor characteristics following irradiation. Because the GaN devices are fabricated on silicon substrates, they are compatible with CMOS devices fabricated on silicon for simplified integration of power-conversion and computing circuitry. Measurements followed the framework of the European Space Agency (ESA) project ESA AO/1-7688/13/NL/RA, “GaN devices for space-based DC-DC power conversion applications.”

Automated wafer probes are measuring the electrical performance of DC power devices on GaN substrates. (Courtesy of Imec)

“These results are important to start using this promising technology for space applications,” noted Rudi Cartuyvels, executive vice president at Imec. “Also, it demonstrates that our 200-mm GaN-on-Si platform has reached a high level of technology readiness and can be adopted by industry.

“Thanks to innovations in transistor architecture and substrate technology, we’ve succeeded in making GaN devices on larger wafer diameters than used today, which brings lower cost perspectives for the second generation of GaN-on-Si power devices,” he added. “Imec is also looking beyond today’s technology, exploring novel substrates, higher level of integrations, and novel devices.”

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.