FETD Simulation Depicts In-Building Radar

Sept. 16, 2008
By simulating the radar pulses directed at buildings, engineers can better understand complex scattering mechanisms. They also can provide benchmark data for evaluating imaging algorithms. Previous work on wall-imaging algorithms has been ...

By simulating the radar pulses directed at buildings, engineers can better understand complex scattering mechanisms. They also can provide benchmark data for evaluating imaging algorithms. Previous work on wall-imaging algorithms has been rooted in techniques like synthetic-aperture-radar (SAR) imaging, time reversal, the boundary scattering transform, and beamforming with nonlinear inverse scattering algorithms. More recently, large-scale, fullwave simulations using the finite-element timedomain (FETD) method have been performed by Mark L. Stowell, Benjamin J. Fasenfest, and Daniel A. White from Lawrence Livermore National Laboratory (Livermore, CA). These researchers had two goals: to simulate a highly detailed building model consisting of more than 10 billion mesh elements and to investigate various wall materials. To investigate wall materials, the researchers modeled a twostory building with concrete walls and cinder block and rebar construction. The hypothetical radar is a pulsed system with 1-GHz bandwidth and 700-MHz center frequency.

Most of the simulations were conducted on the ZEUS Linux computer cluster at Lawrence Livermore National Laboratory. This cluster comprises 288 computational nodes, which each contain four AMD (www.amd.com) dualcore Opteron processors. See "Investigation of Radar Propagation in Buildings: A 10-Billion Element Cartesian-Mesh FETD Simulation," IEEE Transactions on Antennas and Propagation, August 2008, p. 2241.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Can I Use the VNA Software Without an Instrument?

April 19, 2024
Our VNA software application offers a demo mode feature, which does not require a physical VNA to use. Demo mode is easy to access and allows you to simulate the use of various...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...