Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

This next year will see the advancement of a revolution in connectivity between man and data. The depth and design of this connectivity will bring us closer to technology and our bodies while enhancing our ability to compete electronically on the battlefield. The development of RF technologies, which are of course key to connected systems, is making possible technologies that were once relegated to pure fantasy (Fig. 1).

Fig. 1Among the highlights of upcoming technological developments are machines with greater mobility and intelligence; low-cost, military-grade multi-function devices; wireless data access virtually everywhere; and the ability to rapidly and accurately test the latest technologies.

Unmanned Systems

From intelligent flying drones that mimic insects or birds of prey to pack-mules for land-based troops, the Department of Defense (DoD) is heavily invested in developing incredibly capable unmanned systems for land, air, and sea (Fig. 2). In doing so, it is partnering with other agencies, such as the Defense Advanced Research Projects Agency (DARPA) and the Office of Naval Research (ONR).

The resulting systems rely on RF technologies for communications, control, and the ability to “see” the world around them. Such heightened intelligence, in turn, leads to a demand for greater sensing and communications capabilities for reporting, threat identification, and coordination.

Looking at the current state-of-the-art in drones, last year saw the testing of pack-mule drones, the legged squad support system (LS3) by DARPA, and the development of add-on autonomy kits. Those autonomy kits, which hail from ONR and Lockheed Martin, can turn a variety of military vehicles (like a ground support vehicle or V-22 Osprey) into semi-autonomous robots.

Fig. 2Much of the investment in drone technology has focused on devices that eliminate the need for human soldiers to participate in support roles, such as ferrying supplies and cargo across the battlespace. In addition to fatiguing and stressing soldiers, such tasks often result in casualties. Thus, the use of autonomy kits and drones can help militaries save lives. At the same time, they can reduce spending and focus on force-multiplying and performance-enhancing technologies.

In a similar vein, much of the US military’s drone system development seeks to enable troops to virtually extend their reach into a battlefield using remotely controlled robots. Such robots can operate semi-autonomously or via direct human control. Here, much also is saved in terms of training costs.

For example, a sergeant who is already familiar with video-game controls can learn to remotely pilot the latest combat equipment with much less time and effort—especially when compared to the level of education and training needed to ready a physicist/engineer/pilot to operate the latest combat craft. Recognizing this trend, the Navy has funded the development of an autonomous and controllable fighter aircraft. The use of machine swarms also is being considered and tested to combat high-number and enemy swarm threats–particularly in naval environments.

Of course, the communications links and coordination electronics for these systems rely completely on wireless technologies. These wireless developments require more intelligent and integrated RF/microwave/millimeter-wave technologies, which can be rapidly reconfigured and reprogrammed. Over time, technologies that integrate high-performing computation hardware, RF hardware, and a sophisticated, flexible software plane will increasingly be employed. Those integrated technologies also will advance over time, thus better enabling these autonomous and remotely controlled machines to function on a battlefield that is brewing with complexity and threats.

Among the technologies that will be enhanced to provide the adaptability and control needed by these systems are software-defined radios, field-programmable gate arrays (FPGAs), GaN on silicon, and reconfigurable RF devices. Due to the high numbers of these systems, modular and mass-manufacturing techniques also will be critical in enabling the next generation of defense robots.

Commercial-Off-the-Shelf Components

To cope with the need for cost-effective military systems that can still compete with the latest threats, both the military-technology supply chain and design approach must be reinvented (Fig. 3). Part of this trend revolves around using high-performing and rugged commercial-off-the-shelf (COTS) components in modern military equipment and modular design. The old method of low-volume, highly custom components is now largely outdated, thanks to  modern DoD requirements. Today’s defense contractors/sub-contractors are designing and using components and subsystems that can meet the needs of both high-volume commercial/industrial applications and the stringent demands of the modern battlefield.

Fig. 3Specifically, size, weight, power, and cost (SWAP-C) is driving the use and development of COTS devices and modular-open-systems-architecture (MOSA) approaches. These design criteria are hypercritical for electronic-warfare (EW) and radar systems, as they will be employed with unmanned vehicles in the land, air, and sea. These EW; radar; and intelligence, surveillance, and reconnaissance (ISR) systems also are supposed to undergo more technical blending, as the hardware and software controlling them increasingly adopts the same technologies.

At the core of all of these devices, for example, are an SDR, FPGAs, digital-signal-processing (DSP) units, general-purpose processors (GPPs), and very-high-speed domain-conversion technologies. As GaN is incorporated onto substrates like silicon, further integration will be seen in digital systems.

In the near future, these devices will actually occupy the same module, if not the same integrated circuit (IC). Such high levels of integration are already being seen in next-generation EW technologies, such as Raytheon’s next-generation jammer (NGJ). This active electronically steered array (AESA) jammer is both an extremely powerful radar and a remotely networked SDR.

GaN will continue to provide greater power density while solving thermal control challenges. In the more distant future, carbon-based electronics will take GaN’s place to provide even higher density. As a result of these advancements, RF devices will merge closer to the analog and digital devices in the modular card or box-based systems built on open architectures. Examples include PXI/PCI, AXI, and VME card-slot-based modular hardware with an abstracted software layer.

By taking a proprietary approach—as Mercury Systems is doing with its OpenRFM architecture—or leveraging the Advanced Telecom Computing Architecture (ATCA), companies are working to modularize RF systems in combat aircraft. Their goal is to create an open standard based on easily replaceable modules, which can support a variety of different configurations and functions. Such systems are built on a common hardware interface. Software abstractions dictate whether device behavior will be modified via a rapid module swap in the field or simple reprogramming.

This type of design approach offers great benefits for the defense industry, as it lowers the time spent on design, deployment, modernization, and maintenance. It also cuts the cost factors associated with future-proofing and upkeep. In the commercial and industrial computer-electronics industry, COTS and MOSA-focused designs comprising common hardware with software abstraction have already been embraced. They have proven to be a cost-effective and rapid method of fielding high-performance products, which may further entice military interests.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.