Mwrf 1520 05k Fig X3promo 0

Hybrid VCO Enables Robust Startup

Aug. 1, 2014
Using a hybrid AB/B class VCO typology, researchers from National Taipei University of Technology have designed and tested a low-supply-voltage, low-DC-power-dissipation, and wide-tuning-range circuit.
Using a hybrid AB/B class VCO typology, researchers from National Taipei University of Technology have designed and tested a low-supply-voltage, low-DC-power-dissipation, and wide-tuning-range circuit.

To enable higher-frequency and lower-power circuitry for high-data-rate wireless communications, advancing RF integrated-circuit (IC) technology is critical. Using CMOS technology offers the benefits of low voltage, low direct-current (DC) dissipation, and high integration of deep-sub-micrometer-range processes. Such advantages can be leveraged to create advanced circuits at a fraction of the current power draw. Using this knowledge, To-Po Wang and Yaon-Ming Yan from China’s National Taipei University of Technology have designed a VCO circuit with a measured tuning range of 25.6%.

To solve a traditional problem of high-performance class-B VCOs, a hybrid-class AB/B VCO typology can be used to soften startup conditions. This approach lowers the DC dissipation of the circuit using a 0.18-μm CMOS process. The sweep frequency of the VCO ranges from 10.10 to 13.15 GHz.

The hybrid VCO requires 2.4 mW of power with a supply voltage of 0.75 V. Phase noise in the bias condition for all frequencies averages -101.4 dBc/Hz at 1 MHz offset from the carrier. Such low phase noise is achieved by using a pMOS transistor as a tail current driver. High-value resistors (5 kμ) are implemented at the gate and bank bias voltages. See “A Low-Voltage Low-Power Wide-Tuning-Range Hybrid Class-AB/Class-B VCO with Robust Start-Up and High-Performance FOM_T,” IEEE Transactions on Microwave Theory and Techniques, March 2014, p. 521.

Sponsored Recommendations

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...