Reflectarray Antenna Can Steer Main Beam To Large Angles From Broadside

Aug. 14, 2007
Microstrip reflectarray antennas promise to provide the best features of printed phased-array and parabolic reflector antennas. Such antennas comprise a feed horn, which illuminates a flat array of reflection elements. To produce a planar phase ...

Microstrip reflectarray antennas promise to provide the best features of printed phased-array and parabolic reflector antennas. Such antennas comprise a feed horn, which illuminates a flat array of reflection elements. To produce a planar phase front in a desired direction, each element's reflection phase has to be adjusted within a 360-deg. range. For beam-scanning applications, the electronically tunable microstrip reflectarray technology provides advantages over an active phased array realized with transmit/receive modules. It eliminates the need for a beamforming network while requiring less active components. At the Ecole Polytechnique in Montreal, Canada, Mathieu Riel and Jean-Jacques Laurin designed a C-band electronically beam-scanning reflectarray that operates without a beamforming network.

This reflectarray comprises a microstrip patch that is printed on a flexible membrane substrate. It is then aperture-coupled to a transmission line loaded with two varactor diodes. When the aperture-coupled antenna is perfectly matched, the microstrip lines are lossless and radiation leakage from the slot can be neglected. The phase variation of the reflection co-efficient, Γtot, will be the same as the phase variation of the reflection co-efficient, Γe.

The designed element allows continuous tuning of the reflected signal's phase over a 360-deg. range with a maximum loss of 2.4 dB at 5.4 GHz. According to the measured results on a 30-element reflectarray breadboard, the main beam can be steered to large angles by adjusting the bias voltages on each element. See "Design of an Electronically Beam Scanning Reflectarray Using Aperture-Coupled Elements," IEEE Transactions on Antennas and Propagation, May 2007, p. 1260.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.