Look Beyond Gain For Mobile Antennas

March 14, 2011
Owing to the increasing use of a variety of wireless networks, gauging antenna performance has become something of a black art. In general, however, antennas are still characterized by basic parameters like efficiency and gain. ...

Owing to the increasing use of a variety of wireless networks, gauging antenna performance has become something of a black art. In general, however, antennas are still characterized by basic parameters like efficiency and gain. Operating-frequency range also must be considered. For certain antennas, the operating frequency partially determines the choice of material for the antenna. In a five-page white paper titled, "Radiated Efficiency: A True Measure of Antenna Performance," Pulse Finland's Jouni Liflnder provides an overview of basic antenna characteristics and their definitions.

For example, one way of measuring antenna performance is with resonance bandwidth. Initially, this bandwidth can be verified with a network analyzer by doing impedance matching. Yet a more accurate antenna-efficiency measurement can be gained by doing the evaluation in an anechoic chamber. In terms of radiated efficiency, Liflnder notes that a good antenna generally will radiate 50 to 60 percent of the energy fed to it (-3 to -2.2 dBi). Even if an antenna has good efficiency, its radiation pattern can have a null in some specific direction or directions.

Gain combines the antenna's efficiency and directivity into one figure, with directivity showing that the antenna radiates with greater efficiency to one particular direction. As a result, gain does not measure the antenna's overall efficiency. Increasingly, the signal emitted from the antenna needs to be equally strong in more than one direction, making gain a poor measure of performance. More companies are therefore choosing radiated efficiency as their preferred test method.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.