Transceiver System Meets Unique Needs Of AMI Standard

Feb. 19, 2010
ADVANCED-METERING-INFRASTRUCTRE (AMI) systems have enabled utility companies to more efficiently collect energy, gas, and water-consumption data. Eventually, these systems will allow consumers to monitor and control their own energy consumption ...

ADVANCED-METERING-INFRASTRUCTRE (AMI) systems have enabled utility companies to more efficiently collect energy, gas, and water-consumption data. Eventually, these systems will allow consumers to monitor and control their own energy consumption in real time. Yet such capabilities will require interoperability between different manufacturers' systems. In Europe, the Wireless M-Bus protocol, which is now detailed in the European normative (EN) standard variant EN 13757-4, is increasingly preferred as the standard for communication between meters. In an eight-page application note titled, "Designing a Wireless Transceiver System to Meet the Wireless M-Bus Standard," Analog Devices' Austin Harney discusses the EN 13757-4 standard and the system requirements when using the firm's ADF7020 transceiver integrated circuit (IC) to design an M-Bus-compatible device.

Wireless M-Bus specifies three modes of operation all of which use subbands G1 and G2 in the ETSI 868.0-to-870.0-MHz general usage band. Stationary mode (Mode S) is intended for communications between stationary or mobile devices, where the data is transmitted only several times a day. In contrast, frequent transmit mode (Mode T) sends out data in chirps every few seconds. Frequent receive mode (Mode R) wakes up frequently to listen for messages from a mobile transceiver. Compared to Mode T, for example, this is typically a higher-power mode because the receiver must be on for a longer time to detect sufficient preamble bits. Although this aspect might make it difficult to design a multiyear battery-powered system, Mode R also is more narrowband. It allows as many as 10 channels for frequency division multiplexing (FDM), which allows the readout of several meters simultaneously.

The discussion of technical considerations for meeting the Wireless M-Bus standard centers on the ADF7020 or ADF7021 sub-gigahertz, low-power radio devices. The ADF7020 is suitable for operation in S, T, and R modes. Despite its relatively narrow bandwidth in R mode, the ADF7021 is a better choice for optimizing adjacent-channelrejection (ACR) performance.

Beyond the radio devices, the appropriate external crystal must be chosen to meet the Sand T-mode data rates of 32.768 and 100 kb/s, respectively. The ETSI emissions mask also must be considered, as M-Bus specifies frequency-shiftkeying (FSK) modulation instead of Gaussian FSK or raised cosine FSK. In doing so, it makes the ETSI modulation-bandwidth requirement more difficult to meet. That modulation bandwidth can be simulated, however, using the free ADI SDR Design Studio tool. The note also delves into frequency and chip-rate tolerance, receiver sensitivity requirements, and deviation tolerance.

Analog devices, inc., 3 Technology Way, Norwood, MA 02062; (781) 329-4700, FAX: (781) 461-3113, Internet: www.analog.com.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.