Measurement Equipment Readies For LTE Rollout

Oct. 22, 2009
THIS PAST JUNE, the latest version of Release 8 of the 3rd Generation Partnership Project (3GPP) was unveiled. Many expect Long-Term Evolution (LTE) to be the long-term, high-speed data solution for all 3GPP-based wireless networks, such as GSM ...

THIS PAST JUNE, the latest version of Release 8 of the 3rd Generation Partnership Project (3GPP) was unveiled. Many expect Long-Term Evolution (LTE) to be the long-term, high-speed data solution for all 3GPP-based wireless networks, such as GSM and WCDMA. Although LTE can be built on major carriers' existing infrastructure, it differs from current technologies. To help engineers grasp the basic aspects of LTE and how system performance will be measured, Rohde & Schwarz has released a white paper titled, "Understanding Long-Term Evolution Fundamentals and Measurement Challenges."

The 15-page document begins by describing what sets LTE apart from other wireless communications standards. In systems employing multiple-input multiple-output (MIMO), for example, the transmitter and receiver use multiple antennas to increase data throughput. They do not need additional bandwidth or higher transmit power. MIMO systems also achieve higher transmission robustness by increasing the signal-to-noise ratio (SNR) for terminals at the cell edge. In addition, LTE stands out for its use of Orthogonal Frequency Division Multiple Access (OFDMA) in the downlink. OFDMA provides multiple access by assigning subsets of subcarriers to individual users. In doing so, it allows simultaneous multi-user, low-data-rate transmission.

For component or entity testing, LTE demands standard instruments like signal generators and signal and spectrum analyzers. Radio communication testers can verify the RF and protocol stack of a device under test (DUT). They allow specific services of interest to run on the Internet Protocol (IP) layer. Yet the testing of LTE is complex, as MIMO has not previously been deployed as a core technology in both the infrastructure and user equipment of a personal communications system. During the development, manufacturing, installation, and maintenance of LTE infrastructure and user equipment, changes will therefore be made to the test specifications as well as how tests are conducted.

The white paper includes sections on physicallayer, data-path, functional, performance, and production testing. It explains when each type of testing is done and the critical steps to make sure they are done correctly. The note then moves on to specific primary tests and how they can be configured. RF integrated circuits (RFICs) are used as an example. This work emphasizes that ratification of the LTE standard is just the first step in the evolutionary process that will unfold as infrastructure and user equipment are developed. When the first LTE systems are deployed, more will be learned about how they actually compare to the predicted and actual performance of LTE networks.

Rohde & Schwarz, Mhldorfstrae 15, 81671 Mnchen, Germany; +49 89 41 29 0, FAX: +49 89 41 29 12 164, Internet: www.rohde-schwarz.com.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...