GaAs Proves Reliable At High Operating Temperatures

Dec. 15, 2006
Manufacturers of Gallium-Arsenide (GaAs) and other semiconductor devices use an accelerated life test to check the reliability of MESFETs. Such tests provide information about failure mechanisms, activation energies, and failure rates. With these tests, ...

Manufacturers of Gallium-Arsenide (GaAs) and other semiconductor devices use an accelerated life test to check the reliability of MESFETs. Such tests provide information about failure mechanisms, activation energies, and failure rates. With these tests, an application note from WJ Communications, Inc. (San Jose, CA) works to show that catastrophic failure may occur at conservative channel temperatures in excess of 220°C.

The four-page application note, which is titled “GaAs Reliability at High Operating Temperatures,” begins by reviewing some of the existing literature on this subject. According to data on GaAs MESFET reliability, the main failure mechanisms involve gate metallization, Schottky contact, and source/drain ohmic contacts. The dominant failure mode is channel related.

With high-temperature life tests, most physical/chemical processes can be accelerated with temperature at a rate that is correlated to a constant: the activation energy. Normal thermal-analysis techniques are listed. In addition, equations are provided for MESFET failure mechanisms. The paper shows that MESFET reliability and channel temperature are strongly linked. Under normal RF and DC conditions, the channel temperature can be in excess of 250°C without causing instantaneous catastrophic failure.

Although the company has performed much RF testing, the application note includes only two tests and their results: MMIC reliability under RF drive and FET life test. The tests do not uncover any failure mechanisms due to an excessive channel temperature of 203°C. In addition, the devices are shown to suffer an ambient temperature of 220°C without channel breakdown.

WJ Communications, Inc., 401 River Oaks Parkway, San Jose, CA 95134-1916; (408) 577-6200, FAX: (408) 577-6621, Internet: www.wj.com

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...