Subharmonic Mixers Best Serve Millimeter-Wave Radios

March 19, 2009
WITH THE INCREASING DEMANDS in the microwave and very-small-aperture-terminal (VSAT) radio market, the frequency band of operation has risen while modulation schemes have grown more complex. To design a millimeter-wave radio that can provide ...

WITH THE INCREASING DEMANDS in the microwave and very-small-aperture-terminal (VSAT) radio market, the frequency band of operation has risen while modulation schemes have grown more complex. To design a millimeter-wave radio that can provide the required performance at lower cost than its predecessors, manufacturers have replaced hybrid-mixer technology with solutions based on monolithic-microwave integrated circuits (MMICs). In a seven-page application note titled, "Subharmonic Vs. Fundamental Mixers for High-Capacity Millimeterwave Radios," Hittite Microwave Corp. compares the performance of a double-balanced mixer and a subharmonic mixer in the 27-GHz millimeter-wave radio band.

A subharmonic mixer operates with a localoscillator (LO) frequency at half the RF frequency. In doing so, it eliminates the need for a more complex and costly high-frequency LO. In addition, the subharmonic mixer rejects even-order spurious emissions. A carefully designed mixer can achieve 2LO-RF isolation to 35 dB.

In a subharmonic mixer, it is essential that the diodes are anti-parallel. When an LO signal with sufficient power is incident on the diodes, the diodes will switch on and off in a complementary fashion, thereby creating a waveform that is rich in harmonics. A subharmonic mixer will cancel all harmonics with an even order, such as the RF LO (1 + 1 = 2) while passing the odd-order harmonics, RF 2LO (1 + 2 = 3). Although the fundamental LO will be present at the mixer's RF and intermediate-frequency (IF) ports, it will be significantly lower in frequency.

A double-balanced mixer operates much the same. Yet the currents add differently because of the diodes' ring configuration. Because the sum-and-difference product RF 2LO is naturally suppressed, the double-balanced mixer is unworkable as a subharmonic mixer. Although it rejects more spurious products, the doublebalanced mixer requires a more complex and costly frequency-generation unit. Mixer performance was simulated using a traditional spurious calculator and SPECTRASYS. The subharmonic mixer's spurious response resulted in an input frequency of 3 GHz at 0 dBm and a LO frequency of 12.75 GHz at 4 dBm. For the double-balanced mixer, the input frequency was the same. But the LO was at 25.5 GHz with an input power of +13 dBm. The simulations found that the subharmonic mixer had a spurious product at 3LO2-2IF2. In contrast, the double-balanced mixer had a spurious product at (2IF2 + 2LO2) (LO2 + IF2).

Hittite Microwave Corp., 20 Alpha Rd., Chelmsford, MA 01824; (978) 250-3343, FAX: (978) 250-3373, Internet: www.hittite.com.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.