Imaging Systems Overcome Atmosphere And Materials

Jan. 23, 2008
BOTH HOMELAND SECURITY and military agencies have been seeking technologies that detect guns, knives and improvised explosive devices (IEDs). Using the millimeter and sub-millimeter wavebands, techniques to image people when they are close to a ...

BOTH HOMELAND SECURITY and military agencies have been seeking technologies that detect guns, knives and improvised explosive devices (IEDs). Using the millimeter and sub-millimeter wavebands, techniques to image people when they are close to a sensor have already been developed. Yet research by Roger Appleby from QinetiQ (Malvern, UK) and H. Bruce Wallace of MMW Concepts LLC (Havre De Grace, MD) examines standoff ranges above 5 m. In this range and in the open, one could survive a person-borne IED with no shrapnel.

The researchers review the techniques and technologies that are currently being investigated. At 100 GHz, equipment is relatively mature and can form a baseline for performance comparisons. At 1 THz, however, the combination of atmospheric absorption and scattering from clothing can severely attenuate the signatures available. To sensor developers in the millimeter-wave, submillimeter-wave, and terahertz regions, two primary concerns exist: atmospheric attenuation and scattering from atmospheric particulates like rain and fog.

From 100 GHz to 1 THz, there are differences in the optical properties of skin, explosives and metal. As the frequency rises, the attenuation in clothing and the atmosphere tends to increase. At 100 GHz, for example, it will be dominated by the reflectivity of the items and their geometrical relationship to the body. At and above 500 GHz, attenuation will be dominated by the emissivity of the items and their physical temperature. To exploit these signatures, systems must have the correct parameters in terms of aperture size, sensitivity and signal-to-noise ratio. See "Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region," IEEE Transactions on Antennas and Propagation, Nov. 2007, p. 2944.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.