Active Cable-Mesh Main Reflector Proves Feasible

Aug. 14, 2007
Following the completion of the Atacama large-millimeter/submillimeter array (ALMA), an initiative emerged to develop a radio telescope that would provide a two-orders-of-magnitude increment in sensitivity over existing facilities at ...

Following the completion of the Atacama large-millimeter/submillimeter array (ALMA), an initiative emerged to develop a radio telescope that would provide a two-orders-of-magnitude increment in sensitivity over existing facilities at meter-to-centimeter wavelengths. To achieve this goal, a radio telescope is needed with a collecting area of up to 1 km2. A 500-meter aperture spherical telescope (FAST) has been proposed as an engineering demonstrator. The main reflector should overcome the issues of narrow bandwidth due to line feed and spherical error from the spherical reflector. B.Y. Duan and J.L. Du from China's Xidian University examine the active cable-mesh main reflector's potential in detail.

The researchers delve into the design, mechanics analysis, and shape adjustment of the active cable-mesh reflector. The cablemesh reflector of FAST is a spatial cable mesh. For larger antennas, triangular facet has been proven to lead to the fewest number of structural members in order to meet both accuracy and electromagnetic (EM) performance requirements. A cable-mesh structure with a triangular network is therefore adopted as the supporting structure.

In terms of mechanics, the active cable-mesh reflector for FAST must overcome surface accuracy adjustment and the surface error induced by facet approximation. The proposed method for surface accuracy adjustment, which aims at the active cable-mesh reflector, provides numerous benefits. According to the simulation, for example, it widens the operation frequency to roughly 130 MHz to 8.8 GHz. See "On Analysis and Optimization of an Active Cable-Mesh Main Reflector for a Giant Arecibo-Type Antenna Structural System," IEEE Transactions on Antennas and Propagation, May 2007, p. 1222.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.