UWB-IR Transmitter Dissipates 29.7 mW At 2.2-V Supply Voltage

Oct. 11, 2007
In wireless-sensor newtork systems, many wireless terminals collect information like temperature and humidity. ZigBee has been billed as the optimal solution for such networks. Yet Ultra Wideband Impulse Radio (UWB-IR) may prove to be an even ...

In wireless-sensor newtork systems, many wireless terminals collect information like temperature and humidity. ZigBee has been billed as the optimal solution for such networks. Yet Ultra Wideband Impulse Radio (UWB-IR) may prove to be an even better solution. Such thinking led to the development of a UWB-IR transmitter with a digitally controlled pulse generator by Hitachi Ltd.’s Takayasu Norimatsu, Ryosuke Fujiwara, Masaru Kokubo, and Masayuki Miyazaki in conjunction with Akira Maeki, Yuji Ogata, Shinsuke Kobayashi, Noboru Koshizuka, and Ken Sakamura from Tokyo’s YRP Ubiquitous Networking Laboratory.

Essentially, UWB-IR flaunts low power dissipation per data rate, which leads to longer battery life. In sensor networks, the transceiver transmits a certain size of data at regular intervals. Energy consumption decreases by shortening the transmission periods. For example, UWB-IR transceivers with sensors transmit 55 B of data per 5 min. in the sensor network system. When the data rate is 10 Mb/s, they operate for only 44 μs. In contrast, a ZigBee transceiver with a 250-kb/s data rate will operate for 3520 μs. The UWB-IR transceiver also enables ranging using pulse communication like radar. As a result, the network can detect the terminals’ locations automatically.

The UWB transmitter was fabricated by a 0.18-μm bulk CMOS process. With this digital-intensive architecture, the pulse shape can easily be adjusted. In addition, the chip area is just 0.40 mm2. The transceiver’s measured average power dissipation is 29.7 mW, thanks in large part to the intermittent operation of the power amplifier. See “A UWB-IR Transmitter with Digitally Controlled Pulse Generator,” IEEE Journal of Solid-State Circuits, June 2007, p. 1300.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.