Rf Microwaves Feature Image 1540x800 61f00f34ab1cf

125 GHz Frequency Doubler using a Waveguide Cavity Produced by Micro Stereolithography

Jan. 25, 2022
Read this technical paper to learn how high-precision projection micro stereolithography 3D printing was used to fabricate the first Schottky diode frequency doubler with a split-block waveguide structure.

This technical paper reports on the first Schottky diode frequency doubler with a split-block waveguide structure fabricated by a high-precision projection micro-stereolithography (PµSL) printing process. The printed polymer waveguide parts were plated with copper and a thin protective layer of gold. The surface roughness of the printed waveguide parts has been characterized and the critical dimensions measured, revealing good printing quality as well as a dimensional accuracy that meets the tight tolerance requirements for sub-terahertz active devices.

Sponsored Recommendations

Remote Testing with RF Power Sensors

Performing power measurements of RF devices and systems is an essential part of ensuring accurate, repeatable characterization. A variety of instruments are capable of measuring...

Ceramic Resonator Filters from Catalog to Custom

Mini-Circuits’ line of ceramic coaxial resonator filters features a variety of passbands and frequency ranges between 0.4 and 5.8 GHz. Characterized by high-Q and high K, these...

GaAs Switches Are a High-Performance Alternative to SOI for Test & Measurement Instrumentation

RF switches are ubiquitous in modern test instrumentation designs or for test & measurement applications such as those found in semiconductor test applications.

MMIC Amplifiers Achieve 2W to 10 GHz

Mini-Circuits’ new PMA5-series MMIC power amplifiers afford designers both high dynamic range and significant headroom for high PAPR signals up to 10 GHz. All models provide upwards...