Implanted Antenna Improves In-Body Communications

April 16, 2009
In short-range Biotelemetry applications, antennas are implanted inside the body to forge communication links between medical sensors and exterior instruments. Ultra Wideband (UWB) signal transmission from an in-body implanted antenna to ...

In short-range Biotelemetry applications, antennas are implanted inside the body to forge communication links between medical sensors and exterior instruments. Ultra Wideband (UWB) signal transmission from an in-body implanted antenna to on-body or outside-body devices for biomedical applications has been considered by Ali Khaleghi from Rikshospitalet University Hospital (Oslo, Norway) and Ilangko Balasingham from Norway's University of Science and Technology. The researchers computed the received energy density of the UWB signal in terms of the distance from the body surface of a human anatomy model at the frequency range of 1 to 6 GHz. An implanted UWB elliptic-disc dipole antenna was designed and optimized for use in the chest of the model. The human-body model was analyzed using numerical electromagnetic (EM) code.

The researchers were able to derive path-loss factors of the UWB channel for different distances from the body surface and different implantedantenna depths. The results showed that energy coupling from the nonradiative near field of the body-implanted antenna is dominant for the signal transmission. If near-field components are exploited, the communication link quality can be improved in the range of 14.5 to 18 dB for implant depths of 35 and 55 mm, respectively. At those depths, the calculated energy losses because of the body tissues are a respective 15 and 9.4 dB.

To improve communication link quality, the researchers advise using the implanted antenna's nonradiative near-field region to design and place the receiving antenna as close to the body surface as possible. See "Improving In-Body Ultra Wideband Communication Using Near-Field Coupling of the Implanted Antenna," Microwave And Optical_ Technology Letters, March 2009, p. 585.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.