This UAV platform will nurture the initial development and testing of new concepts in lightweight airborne sensors

Aerial Platform Buoys UAV Sensor Development

Feb. 6, 2013
With the hope of allowing any sensor/communication package to be mounted for testing, an aerial test bed has been created by modifying a Griffon Aerospace UAV.

With the increasing deployment of unmanned aerial vehicles (UAVs), much research is being devoted to the additional tasks that can be performed by these drones. To allow new airborne payloads to be tested rapidly and effectively, a research team at the Georgia Tech Research Institute (GTRI) is developing an airborne testing capability for sensors, communications devices, and other airborne payloads. Dubbed the GTRI Airborne Unmanned Sensor System (GAUSS), this aerial test bed is based on a UAV made by Griffon Aerospace and modified by GTRI (see photo).

The hope is that the airplane itself will simply be a conveyance, eventually allowing any lightweight sensor/communication package to be mounted on it. The GTRI team has developed a modular design that allows the GAUSS platform to be reconfigured for a number of sensor types. Among the possibilities for evaluation are devices that utilize light-detection-and-ranging (LIDAR) and chemical-biological sensing technology.

A project is already underway to develop, install, and test a sensor suite that is relevant to many of GTRI’s customers. It comprises the following: a camera package; a signal-intelligence (SIGINT) package for detecting and locating ground-based emitters; and a multi-channel, X-band ground-mapping radar. To enable electronic scanning, that radar is being designed using phased-array antenna technology. It also can be programmed to transmit arbitrary waveforms. With such flexibility, the radar will be able to do ground mapping in addition to detecting and tracking objects on the ground.

The combined sensor package is lightweight enough to be carried by the GAUSS UAV. Lightweight sensors allow the use of lighter, smaller UAVs. Such drones can fly lower without being detected. Thus, they may gain more or better information by virtue of being closer to the ground.

A variant of the Griffon Outlaw ER aircraft, the GAUSS drone has a 13.6-foot wingspan and a payload capacity of roughly 40 lbs. The aircraft navigates using a high-precision Global Positioning System (GPS) combined with an inertial navigation system. It can be programmed for autonomous flight or piloted manually from the ground. The airborne mission package also includes multi-terabyte onboard data recording and a stabilized gimbal, which isolates the camera from aircraft movement.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.