BAE1_promo.png

More Potent LRASM the Focus of Joint Effort

June 3, 2019
BAE Systems joined forces with Lockheed Martin to further advance the detection capabilities of the Long-Range Anti-Ship Missile (LRASM).

BAE Systems has worked closely with Lockheed Martin on the development of advanced electronic-warfare (EW) technology, notably the Long-Range Anti-Ship Missile (LRASM) for the U. S. Air Force. Built for the B1-B bomber, the LRASM (see figure) demonstrates advanced long-range sensor and targeting technologies.

BAE Systems achieved Early Operational Capability (EOC) with the weapons system by having the U. S. Air Force accept delivery of production LRASM units following BAE’s successful simulation, integration, and flight tests with the B1-B bomber. The LRASM has been created to detect and engage protected ships in all weather conditions, relying on external intelligence and navigation data.

The Long-Range Anti-Ship Missile (LRASM) uses advanced EW sensor technology to achieve long-distance detection capabilities for the U.S. Air Force. (Courtesy of BAE Systems)

“We’re quickly delivering critical capabilities to warfighters to meet their urgent operational needs,” said Bruce Konigsberg, Radio Frequency (RF) Sensors product area director at BAE Systems. “Our sensor systems provide U.S. warfighters with a strike capability that lets them engage protected, high-value maritime targets from safe distances. The missile provides a critical advantage to U.S. warfighters.” The program demonstrates the company’s ability to apply its world-class EW technology to small platforms.

The LRASM incorporates EW, signal processing, and targeting technologies for its long-range detection capabilities. BAE is working closely with Lockheed Martin to further advance the LRASM technology: The two companies recently signed a contract for the production of more than 50 additional sensors and are working to achieve EOC on the U.S. Navy's F/A-18E/F Super Hornet in 2019.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.