Resarchers

Army Seeks Lower-Cost Rechargeable Batteries

Oct. 7, 2019
A new form of rechargeable battery incorporates a solid polymer electrolyte with low-cost iron fluoride electrolyte.

Rechargeable batteries are power sources for many commercial and military tools and will be an essential energy source for many future automobiles. But the global supply of materials used in many rechargeable batteries is limited and shrinking quickly, to the point that the U.S. Army is working with researchers at the Georgia Institute of Technology to develop a new cathode and electrolyte system to replace expensive metals and traditional liquid electrolytes with lower-cost transition-metal fluorides and a solid polymer electrolyte. The ARO is part of the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory (ARL).

One key to the novel batteries is a solid polymer electrolyte. “Electrodes made from transition metal fluorides have long shown stability problems and rapid failure, leading to significant skepticism about their ability to be used in next generation batteries,” said Gleb Yushin, a professor in Georgia Tech’s School of Materials Science and Engineering. “But we’ve shown that when used with a solid polymer electrolyte, the metal fluorides show remarkable stability—even at higher temperatures—which could eventually lead to safer, lighter, and cheaper lithium-ion batteries.”

The solid polymer electrolyte contrasts with the liquid electrolyte used in popular lithium-ion rechargeable batteries. It is used with iron fluoride cathodes to replace traditional cobalt- or nickel-based cathodes to form a smaller battery with more capacity and recharge cycles. “Professor Yushin has identified a novel approach to enable the use of iron fluoride cathodes and addresses issues with dimensional changes and parasitic side reactions to develop lithium batteries,” said Dr. Robert Mantz, division chief, electrochemistry, ARO. “Soldier-wearable technologies are expected to increase significantly, as will the need for power and energy sources to operate them. This research could make battery power more readily available to soldiers in a form that is safe and easily transportable.”

The researchers developed a process to infiltrate a solid polymer electrolyte into a prefabricated iron fluoride electrode. The combination was hot pressed to increase density and reduce voids. “Cathodes made from iron fluoride have enormous potential because of their high capacity, low material costs, and very broad availability of iron,” Yushin said. “But the volume changes during cycling as well as parasitic side reactions with liquid electrolytes and other degradation issues have limited their use previously. Using a solid electrolyte with elastic properties solves many of these problems.”

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.