X-Band Antenna Arrays Enrich RHCP

Oct. 19, 2012
To minimize radiation loss for long-distance communication, SIW-based antenna arrays have been employed while sequential feeding is adopted to enhance RHCP characteristics.

X-band antennas are often used for dense satellite communications payloads. They handle the data transmission of high-resolution captured and detected images from a satellite to a ground station. Instead of a conventional microstrip line antenna for such applications, however, a substrate-integrated-waveguide (SIW) -based antenna array has been proposed and analyzed in several configurations at Korea Aerospace University. The arrays were fabricated as multilayer printed-circuit boards (PCBs) for right-handed circular polarization (RHCP) by a team of researchers comprising Eun-Young Jung, Jae W. Lee, Taek K. Lee, and Woo-Kyung Lee.

Specifically, the researchers proposed, designed, and investigated arrays based on a single element using two types of array antennas centered on SIW-based design. To increase the transmission efficiency between the satellite and ground system while enhancing antenna gain, for example, they introduced the design procedure, simulation, and measured data of SIW-based 2x2 and 2x4 array antennas. These arrays build on a single element operating at X-band from 8.0 to 8.5 GHz. The single-element approach had to overcome issues like feeding loss, undesirable radiation, and the reduced efficiency brought on by the use of a hybrid-coupled and series-microstrip feeding structure. For RHCP generation, a novel SIW-based and cavity-backed ring-slot antenna was combined with a SIW and coaxial feeding network, which has low-loss and broadband impedance-matching characteristics.

To design the single-element 2x2 antenna array, the team had to design a power divider providing equal amplitude at each output port in that array. That SIW-based, four-way power divider was designed and measured as a replacement for the microstrip structures. To further increase antenna gain and improve RHCP quality, a 2x4 antenna array with an eight-way power divider also was designed and investigated. By selecting the optimum amplitudes for each element’s resonant frequency, the SIW-embedded, eight-way power divider satisfied equal division at all output ports.

Finally, a 2x4 antenna array was proposed to improve RHCP gain and enhance CP quality with a sequential feeding scheme. This antenna had eight radiating elements in the top layer, an eight-way power divider, and phase-delay lines in the bottom layer. The researchers reported notable improvements in electrical performance—especially regarding the reflection coefficient bandwidth, antenna gain, and axial ratio bandwidth. See “SIW-Based Array Antennas with Sequential Feeding for X-band Satellite Communication,” IEEE Transactions On Antennas And Propagation, Aug. 2012, p. 3632.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.