where
z = ej2nTi;
k = 1, 2,Nt 1; and
TCk = the tap coefficients.
The current rotator that is connected to the tap currents consists of a switch matrix, which is an array of switches coupled between any of the tap currents and any of the following integrators. Each of the integrators, CI, CI, CI, and CI consists of an operational amplifier and a capacitor. Finally, the output sampling and resetting circuit, which selects the correct integrator output at the correct sampling time, consists of output select switches, Ss1, Ss2, Ss3, etc.
Each of the integrators in the sampling RF filter periodically goes through two operating phases: an integrating phase during which there is at least one current being received, and a rest phase, when no tap current is received. During the rest phase, the integrator's charge is sampled by observing the voltage at its output. This is done by closing the corresponding output sampling switch, connecting the integrator to the subsequent circuits. The voltage on the integrating circuit output is then reset using the reset switch.
Figure 2 shows the timing diagram of the state changes of the four clock buses used in the current rotator of the filter shown in Fig. 1. Here, for example, when CK is high, the current from TC0 is integrated onto CI, then during the time when CK is high, TC1 is integrated onto CI
As an example, the response of a bandpass filter with 140-MHz center frequency and 256 tap currents is shown in Fig. 3 over a wide frequency range and in Fig. 4 around the passband. As expected for a sampling filter, undesired passbands exist on both sides of the sampling frequency. Since the sampling frequency being used by the filter is high (1.61 GHz), these unwanted passbands are far from the desired passband (140 MHz). Furthermore, these unwanted passbands are attenuated by the inherent sinc function operation of the integrating sampler. As Fig. 4 shows, the 3-dB bandwidth of 10 MHz features excellent passband ripple of better than 0.5 dB and adjacent-band attenuation of more than 64 dB.
Since the bandpass filter is an analog equivalent to a digital FIR filter, the center frequency can be changed by changing the sampling frequency that drives the current rotator. Also, the bandpass ripple and bandwidth can be adjusted by changing the tap coefficients. The depth of the adjacentchannel rejection can be increased by powering (enabling) more of the available number of tap currents. This feature enables a trade off to be realized between a high-performance, robust mode of operation and a low-power, modest blocker-rejection mode.