1. Shown is an example of a metamaterial structure.
1. Shown is an example of a metamaterial structure.
1. Shown is an example of a metamaterial structure.
1. Shown is an example of a metamaterial structure.
1. Shown is an example of a metamaterial structure.

Metamaterials-Based Approach Promises Satellite Connection

Sept. 28, 2012
With these novel antenna solutions based on metamaterials, users are expected to be able to access a variety of mobile, portable, and fixed satellite services beyond the capabilities of existing antenna solutions.

Imagine that a new antenna technology truly made “broadband everywhere” possible. As the most recent spinout from Intellectual Ventures (IV), Kymeta just closed a $12-million funding round to develop and bring to market IV’s Metamaterials Surface Antenna Technology (MSA-T). Backed by investments from Bill Gates, Liberty Global, and Lux Capital, Kymeta’s mTenna product line promises to simplify the satellite-communications (satcom) connection needed for broadband Internet on the go, anywhere in the world.

With the mTenna products, users are expected to be able to access a variety of mobile, portable, and fixed-satellite services beyond the capabilities of existing antenna solutions. The key is their use of metamaterials, which can manipulate electromagnetic (EM) radiation (Fig. 1). mTenna uses this capability to electronically point and steer a radio signal toward a satellite. A continuous broadband link is thereby created between a satellite and a moving platform—such as an aircraft, car, or boat—by dynamically manipulating the antenna material’s characteristics. Kymeta also claims that its metamaterials-based approach allows its antennas to be thinner, lighter, more efficient, and less expensive than traditional satcom antenna technology. mTenna is manufactured using established lithographic techniques.

2. This satellite-hotspot product, which is based on advances in materials, could be rapidly deployed to enable satellite-broadband connectivity.

In addition to mobile applications in the aerospace, transportation, and maritime industries, Kymeta plans to develop a portable satellite-hotspot product for individual users (Fig. 2). The laptop-sized antenna will open the door for high-speed Internet and other satellite-broadband services wherever they are needed. For example, this device could benefit everyone from emergency responders in disaster areas to average consumers looking to untether from public Wi-Fi and mobile-broadband signals. Kymeta’s mTenna products are currently in development at the company’s Redmond, WA headquarters. Commercial availability is expected by 2015.

Sponsored Recommendations

Frequency Modulation Fundamentals

March 14, 2024
The development of crystal-clear FM communications was an innovation of genius and toil. Utilized today in applications such as radar, seismology, telemetry and two-way radios...

44 GHz Programmable Signal Generator

March 14, 2024
The Mini-Circuits SSG-44G-RC is a 0.1 to 44 GHz signal source with an RF output range of -40 to +17 dBm with fine resolution. This model supports CW and pulsed (? 0.5 ?s) outputs...

Webinar: Introduction to OTA Measurement for mmWave and Sub-THz

Feb. 19, 2024
Join Jeanmarc Laurent, a leading expert from MilliBox, for an exclusive live webinar showcasing a complete Over-the-Air (OTA) testing system setup. In this immersive session, ...

Using a CMT VNA with Socket Server

Feb. 19, 2024
This application note describes use of a software application CMT Socket Server which is distributed and supported by Aphena Ltd. Please email [email protected] regarding purchase...