Get A Handle On Oscillator Phase Noise

Oct. 20, 2011
As electronic applications proliferate and their frequencies rise, designers are increasingly calling for time bases that are more stable with lower noise. For oscillator designers, the challenge is lowering phase noise. Every oscillator is ...

As electronic applications proliferate and their frequencies rise, designers are increasingly calling for time bases that are more stable with lower noise. For oscillator designers, the challenge is lowering phase noise. Every oscillator is inherently unstable, and this instability manifests itself as a spectrum of noise around the oscillator's resonant or tuned frequency. This noise band, which is generally measured from the carrier to 1 MHz away from the carrier, is depicted as a graph of dBc/Hz versus offset frequency from the carrier, f(Hz). in an application note titled, "Oscillator Phase Noise: Theory vs. Practicality," Greenray Industries explains why phase noise is actually a manageable problem.

The 12-page document begins by looking at different time bases and their properties. Compared to cesium and rubidium, quartz is generally chosen as a resonant material for consumer electronics because it is cheaper, smaller, and has a high quality factor (Q). A look at the different types of crystal oscillators follows, with oven-controlled crystal oscillators (OCXOs) and double-oven-controlled crystal oscillators (DOCXOs) promising the highest stability. Despite their high Q, however, real-world oscillators suffer from some amplitude and phase fluctuations. Their frequency is affected by temperature, long-term drift (aging), and short-term instability. The oscillator's frequency drift will diminish over time, though, which bodes well for long-term performance.

Jitter also is discussed in the application note, as it represents a change in the time of the waveform edge from the ideal nominal-frequency edge. Because most applications will operate within a certain band of frequencies, the jitter effect only needs to be measured in that band. This step calls for conversion to the frequency domain, which results in the phase-noise measurement. The note explains one way to measure jitter and then calculate phase noise at a given frequency. Equations are provided as well.

The Leeson equation also is included for a scenario that accounts for real-world components and the noise that is generated in those circuits. A graph shows how this equation fits into the phase-noise plot. Utilizing the plot, it is easier to come up with guidelines for minimizing phase noise in oscillator designs. Devices with low-flicker noise should be used. Because bipolar junction transistors (BJTs) have a much lower flicker noise than field-effect transistors (FETs), they are more suitable for low-phase-noise applications. Higher drive power also is desirable, as it impacts the phase-noise floor. The note ends with an in-depth section on making phase-noise measurements and the types of instruments required.

Sponsored Recommendations

Designing Wireless Modular Robots Using Advanced 3D Printing Precision

March 28, 2024
Learn how researchers at Southern Methodist University used 3D printing to fabricate wireless modular robots.

Microelectromechanical 3D Printing Resources

March 28, 2024
Check out our curated list of microelectromechanical 3D printing resources and see how PµSL technology offers freedom and speed.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Micro 3D Printing Helps Fabricate Microwells for Microgravity

March 28, 2024
Learn how micro 3D printing helped to fabricate miniaturized vessels called hydrowells for culturing 3D cellular spheroids for microgravity.