Insulating Layers Impact Implanted Antennas

Feb. 18, 2011
RECENTLY, A group of researchers decided to analyze the influence of insulation on implanted antennas for biotelemetry applications in the Medical Device Radiocommunications Service band. Together with Benjamin Fuchs from France's University ...

RECENTLY, A group of researchers decided to analyze the influence of insulation on implanted antennas for biotelemetry applications in the Medical Device Radiocommunications Service band. Together with Benjamin Fuchs from France's University of Rennes, Francesco Merli, Juan R. Mosig, and Anja K. Skrivervik from Switzerland's Ecole Polytechnique Fdrale de Lausanne worked to find the insulation properties that facilitate power transmission. In doing so, they hoped to enhance communication between an implanted antenna and an external receiver.

The researchers found that a simplified model of human tissuesbased on spherical geometries that are excited by ideal sources, such as electric dipole, magnetic dipole, and Huygens sourceprovides reasonable accuracy. Due to its analytical formulation, it also remains very tractable. They succeeded in showing that the proper choice of biocompatible insulation material can improve an implanted antenna's radiation efficiency (in their investigated cases, by up to six times). External insulation simplifies the electromagnetic (EM) transition from the biological tissue to the outer free space. In doing so, it reduces the power absorbed by the human body.

Thanks to the structure's geometry, the team could analytically compute the EM field with a mode-matching technique (MMT) based on spherical-wave expansion. In addition, a convergence criterion was defined to compute the power radiated at any radial distanceincluding the near-field rangewith controlled accuracy. Through their work, the researchers gained insight into the enhancement of power transmission via internal, bio-compatible and external, flexible insulations. The results obtained for the internal insulation provide guidelines for the selection of biocompatible material and the implanted antenna design. See "The Effect of Insulating Layers on the Performance of Implanted Antennas," IEEE Transactions On Antennas And Propagation, Jan. 2011, p. 21.

Sponsored Recommendations

Frequency Modulation Fundamentals

March 14, 2024
The development of crystal-clear FM communications was an innovation of genius and toil. Utilized today in applications such as radar, seismology, telemetry and two-way radios...

44 GHz Programmable Signal Generator

March 14, 2024
The Mini-Circuits SSG-44G-RC is a 0.1 to 44 GHz signal source with an RF output range of -40 to +17 dBm with fine resolution. This model supports CW and pulsed (? 0.5 ?s) outputs...

Webinar: Introduction to OTA Measurement for mmWave and Sub-THz

Feb. 19, 2024
Join Jeanmarc Laurent, a leading expert from MilliBox, for an exclusive live webinar showcasing a complete Over-the-Air (OTA) testing system setup. In this immersive session, ...

Using a CMT VNA with Socket Server

Feb. 19, 2024
This application note describes use of a software application CMT Socket Server which is distributed and supported by Aphena Ltd. Please email [email protected] regarding purchase...