Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

As established technologies improve, clever designers and industry experts have a way of finding new applications and markets for growing technologies. This is very much the case with RF and microwave technologies, as the consumer demand for staying constantly connected spills over into other industries. This trend is now extending to automobiles (Fig. 1). Wireless coverage has to catch up to the demand of its data-hungry users. To meet this demand, terrestrial-based wireless communications are being augmented by ever-more-capable communications satellites.  A few facts, figures, and forecasts on mobile communications and connected automotive solutions may help to streamline the jumble of growth opportunities in the RF and microwave world.

Most mobile RF applications would not be possible without the semiconductor-based solutions that transformed RF components from rack-mounted units to pocket-portable tools for everyday life.  Insights on what to expect from the RF industry can be gleaned by taking a look into the production of RF integrated circuits (ICs) and the industries for which they are produced. An updated study by IC Insights, titled “IC Market Drivers 2013—A study of Emerging and Major End-Use Applications Fueling Demand for Integrated Circuits,” notes that the communications-IC market grew with a compound annual growth rate (CAGR) of 16% from 2009 to 2013. It surpassed the computer-IC market by reaching as much as $100 billion dollars in 2013. This coincides with a report from IDC, which predicts that smartphones will overtake feature-phone sales by over 10% in 2014—thereby growing to almost twice the size of the feature-phone market by 2017. The need for smartphones to have additional antenna elements and radio streams increases the necessary RF components of the smartphone beyond feature-phone requirements.

The Future Of Connectivity: Mobile & Automobiles, Fig. 1

While mobile-phone sales grow, mobile-communications standards are advancing to provide higher data rates while incorporating multiple antennas and advanced features. These advancements, which require more RF-semiconductor development, have demonstrated a rise in production of these components. At the RF MEMS Conference in 2013, a forecast report by Yole Development predicted that the RF microelectromechanical-systems (MEMS) switch and variable capacitor market will grow from more than 50+ million in 2013 to more than 450 million in 2018 (Fig. 2). The forecast noted that the mobile-device market dominates this demand with over 50% of the market share. A number of reports and studies support the theory that the desire for constant high-speed connections by consumers is driving mobile sales and the investment in the telecommunications infrastructure.

The Future Of Connectivity: Mobile & Automobiles, Fig. 2

Cisco shares many statistics and predictions on the mobile communications market in its report, “Visual Networking Index Forecast (VNI).” According to the forecast, there will be 841 million mobile-connected devices in 2017—an increase of almost 400 million compared to 2012. With an estimated increase from 1.26 mobile connections per capita in 2012 to 2.2 from the report, it would stand to reason that mobile data traffic would scale as well. The report predicts that mobile data traffic will hit over 1 exabytes per month, used by over 300 million people in 2017. It also indicates that 7% of the mobile data traffic in 2017 will be from machine-to-machine (M2M) connections with almost 350 million mobile-connected M2M modules. As more “smart” systems are incorporated into daily life every year, such reports show that machine and human communications will spread to more diverse platforms. Automobile communication, or telematics, is an industry that is poised to take advantage of the communications infrastructure boom.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.