PCB

Terahertz Spectroscopy Captures Metal Conductivities

March 29, 2018
Terahertz signals from 0.4 to 2.5 THz can be used in the analysis of thin metal conductors.

Thin metal films such as copper are essential to the design and fabrication of high-frequency circuits, such as microstrip and coplanar waveguide (CPW) on almost-as-thin dielectric substrates in the formation of RF/microwave and even millimeter-wave printed-circuit boards (PCBs). While many studies have been performed on the analysis of the properties of dielectric materials in those PCBs, such as dielectric constant and dissipation factor, much remains to be known about the metal conductors.

In quest of that knowledge, researchers from a number of locations—including the School of Mechanical Engineering of China’s Tianjin University and the School of Electrical and Computer Engineering of Oklahoma State University—pooled their resources into the investigation of different types of thin metal films. The researchers used terahertz spectroscopy to study two key material parameters (conductivity and thickness) simultaneously. They investigated three different metal films (aluminum, copper, and silver) and discovered that their measured values of conductivities for the metals were significantly different than the already-known bulk material conductivity values. Their measurements of material thicknesses were consistent with values obtained from other measurement methods.

The studies were performed with the measurement power of the terahertz time-domain spectroscopy (THz-TDS) system at Tianjin University with the aid of grants from China’s National Natural Science Foundation and the Natural Science Foundation of Tianjin Province. The analysis system operates mainly in the spectrum from 0.4 to 2.5 THz. Samples were prepared by depositing metal films on 22-μm-thick Mylar substrates by means of thermal evaporation.

The researchers concluded that the differences in the measured values of conductivities and the known bulk materials could stem from a number of factors, such as defects in film metal (e.g., grain boundaries), leading to a reduction in the measured conductivities for those thin metal films compared to bulk metal values. The measurement system and test approach provide convenient means for capturing the two simultaneous conductive metal parameters. The material conductivity and thickness data gathered by the THz-TDS system, while not without some variations, does provide invaluable additional insights to computer-aided-engineering (CAE) design programs, including electromagnetic (EM) simulation software used for circuit designs.

See “Characterization of Thin Metal Films Using Terahertz Spectroscopy,” IEEE Transactions on Terahertz Science and Technology, Vol. 8, No. 2, March 2018, p. 161.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.