Ga Npromo 5e83ab865d310

Bump Up Semiconductor Efficiency with GaN (.PDF Download)

March 26, 2020

Gallium nitride (GaN) is quickly becoming the semiconductor material of choice for both RF/microwave and higher-wavelength devices. It has long been a semiconductor foundation for light-emitting diodes (LEDs) and has appeared as recently at the 2020 Consumer Electronics Show (CES) as the latest semiconductor technology for home battery chargers. The technology has perhaps its longest history in the RF/microwave industry in high-frequency semiconductor devices, where it serves as the active device replacement for traveling-wave tubes (TWTs) in high-power pulsed radar systems.

With a wide bandgap of 3.4 eV, GaN supports active devices with extremely fast switching speeds and high power levels. It features a large breakdown voltage, supporting highly efficient and compact pulsed amplifiers that achieve high output power levels in relatively small packages. In the simplest terms, GaN is capable of higher power density and efficiency in a smaller package than silicon (Si) or gallium-arsenide (GaAs) semiconductors.

Sponsored Recommendations

Explore cascaded amplifiers, revealing how a single driver can dominate performance in a four-parallel setup and how optimized input power can reduce AM-to-PM distortion for maximum...
See how an X-band SSB upconverter built with Mini-Circuits components uses IQ mixing to suppress unwanted sidebands and boost spectral efficiency for applications from 5G to radar...
Mini-Circuits VP of Engineering Joe Merenda explains additive phase noise (APN) in RF amplifiers, covering theory, measurement, specifications, and small vs. large signal behavior...
The new M4SWA4-34DR+ SP4T MMIC switch delivers fast, wideband signal routing from DC to 30 GHz, with superior power handling, quick switching, and cost advantages over SOI devices...