Image

InP Resonant Tunneling Diodes Drop LNA Noise Figure

Dec. 15, 2014
By using resonant tunneling diodes in a negative-differential-conductance-style LNA, researchers from the Korea Advanced Institute of Science and Technology (KAIST) were able to reach a high gain-to-DC power ratio with a very low noise figure.

Indium-phosphide resonant tunneling diodes can be used in low-power microwave amplification applications, as these diodes exhibit good negative differential conductance in low DC power modes.

As the world becomes increasingly connected, devices with extremely low power and adequate RF performance will be in demand. One of the biggest challenges that will be faced by those devices is the need to maintain low power while operating the necessary low-noise amplifiers (LNAs) for signal reception. Using resonant tunneling diodes (RTDs), a negative-differential-conductance (NDC) amplifier has been designed by Jongqon Lee, Jooseok Lee, Maengkyu Kim, and Kyounghoon Yang from the Department of Electrical Engineering of KAIST in the Republic of Korea. Their amplifier exhibits a low noise floor at very low direct-current (DC) power-consumption figures.

Indium-phosphide (InP) RTDs possess good NDC characteristics at low DC power. This feature makes them suitable for microwave wireless transmission for remote and sensor applications, which require high performance in power-restricted applications. The research team uses two RTD amplifiers joined with a hybrid coupler. The bypass capacitors, thin-film resistors, spiral inductors, and RTDs in the device are all integrated with a 0.9- μm InP monolithic-microwave-integrated-circuit (MMIC) process.

The center frequency for the low-power LNA is centered at 5.5 GHz with gain of 8.1 dB, a noise figure of 4.5 dB, and a gain-to-DC power ratio of 52.2 dB/mW. These performance metrics exceed comparable LNAs. The next-closest 180-nm CMOS process reportedly reaches just a 12.8 dB/mW gain-to-DC power ratio. See “Negative-differential-conductance RTD amplifier MMIC with record forms of gain-to-dc power ratio and noise figure,” 26th Conference on Indium Phosphide and Related Materials (IPRM), May 2014, pg. 1.

About the Author

Jean-Jacques DeLisle

Jean-Jacques graduated from the Rochester Institute of Technology, where he completed his Master of Science in Electrical Engineering. In his studies, Jean-Jacques focused on Control Systems Design, Mixed-Signal IC Design, and RF Design. His research focus was in smart-sensor platform design for RF connector applications for the telecommunications industry. During his research, Jean-Jacques developed a passion for the field of RF/microwaves and expanded his knowledge by doing R&D for the telecommunications industry.

Sponsored Recommendations

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.

Transforming Battlefield Insights with RCADE

Oct. 31, 2024
Introducing a cutting-edge modeling and simulation tool designed to enhance military strategic planning.

Fueling the Future of Defense

Oct. 31, 2024
From ideation to production readiness, Raytheon Advanced Technology is at the forefront of developing the systems and solutions that fuel the future of defense.

Ground and Ship Sensors for Modern Defense

Oct. 31, 2024
Delivering radars that detect multiple threats and support distributed operations.