This article is part of the TechXchange: Antenna Design.
What you’ll learn:
- The underlying quantum-physics principle that was leveraged to create a non-metallic, gigahertz-range antenna.
- How the researchers used lasers and a rubidium cell as the core of the system.
- Details of the entire antenna arrangement and field test results.
Contrary to conventional thinking, a microwave receiving antenna needn’t be metal or even implement a conductor material. Using a rubidium vapor cell with a corner-cube prism reflector to form a passive RF transducer, a team at the respected University of Otago (New Zealand) was able to detect microwave signals at a modest distance from the active components.
Their compact transducer has no electrical components and is optically linked to an active base station by a pair of free-space laser beams that establish an electromagnetically induced transparency scenario.
The Rydberg State
The underlying physics principle they used begins with atoms in a Rydberg state, where one of the electrons in an atom or molecule has been excited to an orbit with a higher principal quantum number (Reference 1). Among the interesting properties of these states are extreme sensitivity to external influences such as fields and collisions, extreme reactivity, and very large probabilities for interacting with microwave radiation.
Although the Rydberg state itself has been known since the early days of quantum physics, these sensitivity characteristics were demonstrated in 2012 by a team lead by Jonathan Sedlacek using Rydberg-excited rubidium-87 atoms in a glass vapor cell as a sensitive detector for microwave fields (Reference 2).
Previous systems for RF measurements and applications were confined to an optical table in a laboratory due to the need to counter-align the two (or more) laser beams within the atomic vapor cell. Other attempts utilized optical fibers bonded to the glass cell to overcome this constraint and separate the laser generation and detection from the RF probe—again, the vapor cell—but that approach also had weaknesses in alignment and losses.
Laser Beams and a Retroreflector
The Otago team replaced the fiber used by previous researchers to access the vapor cell with two free-space laser beams and a corner-cube prism reflector (also called a retroreflector), which reflected the probe beam back to a photodetector (Fig. 1). Their portable atomic-RF probe was able to sense fields at over 30 meters.