ICP Etching Reduces MM-Wave Substrate Loss

Dec. 12, 2008
FOR GALLIUM-ARSENIDE(GAAS) coplanar passive devices, the design methods used in centimeterwave frequencies have been proven to work for millimeter-wave frequencies up to W-band (75 to 110 GHz). Those same methods can be applied to CMOS coplanar ...

FOR GALLIUM-ARSENIDE(GAAS) coplanar passive devices, the design methods used in centimeterwave frequencies have been proven to work for millimeter-wave frequencies up to W-band (75 to 110 GHz). Those same methods can be applied to CMOS coplanar devices at millimeter-wave frequencies. To demonstrate this point, two test third-order, quarter-wavelength, double-shortedstub wideband bandpass coplanar filters have been implemented at E-band by Pen-Li Huang, Tao Wang, and Shey-Shi Lu from National Taiwan University together with Yo-Sheng Lin from Taiwan's National Chi Nan University.

CMOS-compatible, inductively coupled-plasma, deep-trench technology was used to selectively but completely remove the silicon underneath the filter. After the filters were fabricated, postintegrated- circuit (post-IC) ICP processing was done on the backside of the die. After the backside etching, the results for Filter 1 showed that the input matching bandwidth (S11) below 10 dB moved from the 38.1-to-73.2-GHz band to the 49.4-to- 84-GHz band. In addition, the 3-dB bandwidth for forward transmission, S21, went from the 38.4-to-69.7-GHz band to the 47.1-to-83-GHz one. Filter 1 also achieved a 4.58-dB improvement in peak S21 performance to 3.8 dB. See "Micromachined CMOS E-Band Bandpass Coplanar Filters," Microwave And Optical Technology Letters, December 2008, p. 3123.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...