Beamforming directs 5G signals to user equipment to speed up data rates and increase bandwidth. (Courtesy of MathWorks)
5G specification is so dauntingly different and challenging, particularly from an RF perspective, that massive-MIMO applications can no longer be left as an afterthought. Ultimately, you must iterate on that design. Therefore, baseband design teams are now in lockstep when it comes to integrating those RF effects.
How can design engineers use simulation, prototyping, and verification to overcome these challenges?
Part of MathWorks’ methodology has been to go back and look at the experience of a base-station vendor in the 4G generation. What we learned was that design teams need to be able to iterate quickly as changes arise. The most successful design teams can account for changes in one place (e.g., in an executable specification in a model) and reflect that same change in simulation, prototyping, and deployment on the radio testbed or field trial. Companies that are first to market and have the most reliable offerings will be the ones that can streamline this entire sequence and understand how a specific change gets quickly propagated through all of these stages into the field trial.
This will be crucial for companies looking to gain a competitive advantage in the 5G transition. Having both a goal and difference model during this rapid design iteration, and having engineering change management throughout this process, will enable design teams to make changes once and propagate them seamlessly all the way down the documentation. These things are going to make a huge difference in terms of first to market.
What is the industry currently doing to overcome the challenges 5G presents to accelerate deployment?
One of the key challenges is how well algorithms can be translated into viable hardware and software designs, and how soon and how reliably a test case can be deployed in a testbed. Even if you have the best system designers developing 5G-compliant algorithm designs, but don’t have the means to quickly deploy those designs into hardware and software prototypes, you will fail.
To conquer this challenge, leading companies have invested in adopting improved workflows to provide an integrated path from developing and simulating algorithms and models to quickly deploying them in software and hardware implementations. That workflow from modeling and simulation to rapid prototyping, implementation, and verification is enabling engineers to accelerate innovation by transforming any changes in the algorithms to verification testbeds and field trials.
With wireless providers beginning to actively promote 5G, how should we interpret what’s legitimate and what’s just hype? When can we expect real 5G deployment?
This is a difficult question to answer. There’s no doubt that all major vendors are eventually going to have viable 5G networks sooner rather than later. Everybody is excited to monetize these new technologies and exploit the hype. However, there’s a difference of opinion on how fast 5G-capable mobile devices will come to market, and more importantly, how widespread 5G networks will be upon their deployments. Even today, 4G/LTE coverage maps of North America have gaps.
4G LTE has been around for a while, yet large areas of the country still don’t have access. So, when 5G is deployed, it will not be accessible to everyone. Moreover, equipment vendors and network providers are probably going to be ready sooner than the mobile device market. Additionally, we must consider that handheld devices capable of tapping into the 5G network will still need to be designed, ratified, validated, and mass-produced.
To learn more about how you can explore key technologies for the emerging 5G standard, download the ebook, Development of 5G Technology with MATLAB.