Raytheon makes diamond plates in an array of sizes Lasers are used to cut desired shapes Photo courtesy of Raytheon

GaN Technology Triples Power Density

April 18, 2014
Raytheon’s GaN technology recently showed that it can provide as much as five times the thermal conductivity of previous SiC-on-diamond transistors.

Gallium nitride (GaN) continues to reach new milestones as a leading semiconductor technology. As a replacement for silicon carbide (SiC) on diamond, for instance, Raytheon’s GaN-on-diamond devices reportedly boasted three to five times’ higher thermal conductivity in a recent demonstration. As a result, the technology could enable next-generation radar, communications, and electronic-warfare systems to perform at higher levels while reducing cost and size.

The demonstration used a 10-x-125-μm (1.25-mm) GaN-on-diamond high-electron mobility transistor (HEMT). The device represented a unit cell for constructing power-amplifier (PA) monolithic microwave integrated circuits (MMICs). Those MMICs serve as the foundation for solid-state RF transmitters and active electronically scanned arrays. With the GaN-on-diamond technology reducing thermal resistance within the device, they can be used at higher power densities. This aspect helps to reduce the cost, size, weight, and power of these systems.

These results build upon the company’s first demonstration of GaN-on-diamond transistors in 2009 and GaN-on-diamond MMICs in 2011. Raytheon’s diamond material is synthesized using a chemical-vapor-deposition (CVD) process that allows for higher conductivity. That process and technology are an integral part of Raytheon’s radar programs including Air and Missile Defense Radar and Next Generation Jammer.

About the Author

Iliza Sokol | Associate Digital Editor

Iliza joined the Penton Media group in 2013 after graduating from the Fashion Institute of Technology with a BS in Advertising and Marketing Communications. Prior to joining the staff, she worked at NYLON Magazine and a ghostwriting firm based in New York.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...