Phased-Array-Antenna Transceiver System Spans 10 To 35 GHz

April 12, 2007
Both commercial and military wireless-communication applications require systems that can operate over multi-frequency bands. Although a wideband phased-array antenna transceiver system has been looked at as a potential solution, its bandwidth ...

Both commercial and military wireless-communication applications require systems that can operate over multi-frequency bands. Although a wideband phased-array antenna transceiver system has been looked at as a potential solution, its bandwidth is limited by several system components. At Texas A&M University, however, Seungpyo Hong, Sang-Gyu Kim, Matthew R. Coutant, Christopher T. Rodenbeck, and Kai Chang developed a compact, phased-array-antenna transceiver system that can operate over a 10-to-35-GHz bandwidth. This system offers beam scanning and full-duplex communication.

Building a phased-array antenna system that operates in multi-frequency bands demands a wideband transmit/receive module, wideband antenna element, wideband phase shifter and control circuit, and phased-array architectures. For satellite communications, such systems also must provide compactness, full-duplex operation, and the ability to transmit and receive signals simultaneously. Through a new configuration, the researchers achieved an impressive increase in antenna bandwidth while adding two more millimeter-wave channels to the multiplexer. The result is a compact, six-channel, wideband multiplexer.

Essentially, the system consists of ultra-wideband Vivaldi antennas, a multi-line PET-based phase shifter, a six-channel microstrip multiplexer, and monolithic-microwave-integrated-circuit (MMIC) amplifiers. The multiplexer routes 10-, 19-, and 32-GHz signals to the transmit path and 12-, 21-, and 35-GHz signals to the receive path. For all six channels, the multiplexer shows insertion loss between 2.2 and 3.4 dB. See "A Multiband, Compact, and Full-Duplex Beam Scanning Antenna Transceiver System Operating from 10 to 35 GHz," IEEE Transactions on Antennas and Propagation, Feb. 2006, p. 359.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.