Architecture Cracks Terahertz Power Generation And Tuning

March 22, 2013
Using a coupled oscillator structure with a novel power generation and combining method, power generation and tuning can be performed in terahertz circuits without impacting each other.

CMOS circuits have been proven suitable for sub-millimeter-wave and terahertz frequencies from 300 GHz to 3 THz. To realize a complete terahertz system, however, a challenge still remains in the high-power, tunable signal source. When using LC-resonator-based voltage-controlled oscillators (VCOs), performance begins to degrade beyond 100 GHz. While frequency multipliers solve some of these problems, they require a high-power external source—something undesirable in a fully integrated terahertz source. One alternative could lie in a VCO architecture based on coupled oscillators in a loop configuration, which has been created by Yahya M. Tousi and Ehsan Afshari from Cornell University and Omeed Momeni from the University of California at Davis.

To realize a high-power VCO at the sub-millimeter-wave and terahertz band, three requirements must be met. First, the signal source should be able to generate high harmonic power above the device fmax. The generated power also should be efficiently delivered to the output load. Finally, a frequency-tuning mechanism is needed that will not adversely affect the first two requirements.

In this approach, multiple core oscillators are coupled to generate, combine, and deliver their harmonic power to the output node without using varactor diodes. Leveraging the theory of nonlinear dynamics, the researchers are able to control the coupling between the cores. In doing so, they can set their phase shift and frequency.

Because of the new architecture’s approach to frequency control, the tradeoff between frequency tuning and power generation in conventional VCOs is largely resolved. Frequency tuning can therefore be achieved while maintaining high output power in the sub-millimeter-wave frequency range. The engineers’ approach also provides an effective way to generate and combine the harmonics of the fundamental frequency from multiple core oscillators.

The researchers fabricated two high-power terahertz VCOs in a 65-nm low-power (LP) bulk process. According to measurements, the first one provides 0.76 mW output power at 290 GHz with a 4.5% tuning range. The second VCO puts out 0.46 mW at 320 GHz with a 2.6% tuning range. See “A Novel CMOS High-Power Terahertz VCO Based on Coupled Oscillators: Theory and Implementation,” IEEE Journal Of Solid-State Circuits, Dec. 2012, p. 3032.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.

Transforming Battlefield Insights with RCADE

Oct. 31, 2024
Introducing a cutting-edge modeling and simulation tool designed to enhance military strategic planning.

Fueling the Future of Defense

Oct. 31, 2024
From ideation to production readiness, Raytheon Advanced Technology is at the forefront of developing the systems and solutions that fuel the future of defense.

Ground and Ship Sensors for Modern Defense

Oct. 31, 2024
Delivering radars that detect multiple threats and support distributed operations.