One of the images taken by the Global Hawk during a nighttime flight of a snow covered mountain Photo courtesy of Northrop Grumman

Radar Gets Upgrade For UAV Weather Mission

Jan. 3, 2014
Adding Ka-band functionality to a previously L-band-only UAV synthetic aperture radar allowed the Global Hawk to collect data about the Canadian Arctic in a recent mission.

Unmanned aerial vehicles (UAVs) have proven to be extremely useful in collecting environmental data that can help scientists understand weather phenomena. Yet such tasks require a suitable radar system. For its most recent use on a Global Hawk UAV, for example, a series of changes and updates had to be done on the UAV synthetic aperture radar (SAR) that was previously used on the Gulfstream III (G-III). The Global Hawk’s mission was to collect data in the Canadian Arctic to study changes in topography and Arctic ice caps.

The SAR was originally developed under NASA’s Earth Science Technology Office (ESTO) to support repeat-pass radar interferometry. It has a non-pressurized, compact, pod-based, and configurable structure, which makes it suitable for multiple platforms and as a radar-technology testbed. Initial capabilities kept the radar performing at the L-band, enabled by an electronically scanned antenna.  While integrated on an aircraft like the G-III, it could then target environmental applications including vegetation mapping, land-use classification, soil-moisture mapping, and archeological research.

For use on the Global Hawk, the radar had to be configured for long-duration/long-range data campaigns. Single-pass polarimetric-interferometry (SPI) at Ka-band also was enabled for ice-sheet and river topographic mapping. Two radar pods—each with its own active array antenna—were developed for the necessary high precision.

Those pods are mounted symmetrically under the Global Hawk’s wings. One, which comprises the entire radar, serves as the master pod. The other functions as the slave pod with an active antenna array and the motion measurement subsystem (to track the precise location and attitude of the slave radar antenna). The master pod provides power, radar timing, transmit chirp, and frequency up/down conversion for the slave pod. The Global Hawk also was equipped with a high-resolution camera to observe the Arctic ice caps over a 21-hr. flight.

This mission marks the Global Hawk’s first flight through Canadian civil airspace. Known for their high-altitude, long-endurance capabilities, these UAVs have been used in a variety of other environmental missions. For example, they have collected atmospheric data for NASA’s Airborne Tropical Tropopause Experiment (ATTREX), which studies hurricane formations and intensity changes.

Information for this article was gathered from the paper, “UAVSAR Instrument: Current Operations and Planned Upgrades,” and the presentation, “An Overview of UAVSAR’s New Capabilities,” from the Jet Propulsion Laboratory at the California Institute of Technology.

About the Author

Iliza Sokol | Associate Digital Editor

Iliza joined the Penton Media group in 2013 after graduating from the Fashion Institute of Technology with a BS in Advertising and Marketing Communications. Prior to joining the staff, she worked at NYLON Magazine and a ghostwriting firm based in New York.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.