Image

Hybrid VCO Enables Robust Startup

Aug. 1, 2014
Using a hybrid AB/B class VCO typology, researchers from National Taipei University of Technology have designed and tested a low-supply-voltage, low-DC-power-dissipation, and wide-tuning-range circuit.

Using a hybrid AB/B class VCO typology, researchers from National Taipei University of Technology have designed and tested a low-supply-voltage, low-DC-power-dissipation, and wide-tuning-range circuit.

To enable higher-frequency and lower-power circuitry for high-data-rate wireless communications, advancing RF integrated-circuit (IC) technology is critical. Using CMOS technology offers the benefits of low voltage, low direct-current (DC) dissipation, and high integration of deep-sub-micrometer-range processes. Such advantages can be leveraged to create advanced circuits at a fraction of the current power draw. Using this knowledge, To-Po Wang and Yaon-Ming Yan from China’s National Taipei University of Technology have designed a VCO circuit with a measured tuning range of 25.6%.

To solve a traditional problem of high-performance class-B VCOs, a hybrid-class AB/B VCO typology can be used to soften startup conditions. This approach lowers the DC dissipation of the circuit using a 0.18-μm CMOS process. The sweep frequency of the VCO ranges from 10.10 to 13.15 GHz.

The hybrid VCO requires 2.4 mW of power with a supply voltage of 0.75 V. Phase noise in the bias condition for all frequencies averages -101.4 dBc/Hz at 1 MHz offset from the carrier. Such low phase noise is achieved by using a pMOS transistor as a tail current driver. High-value resistors (5 kμ) are implemented at the gate and bank bias voltages. See “A Low-Voltage Low-Power Wide-Tuning-Range Hybrid Class-AB/Class-B VCO with Robust Start-Up and High-Performance FOM_T,” IEEE Transactions on Microwave Theory and Techniques, March 2014, p. 521.

About the Author

Jean-Jacques DeLisle

Jean-Jacques graduated from the Rochester Institute of Technology, where he completed his Master of Science in Electrical Engineering. In his studies, Jean-Jacques focused on Control Systems Design, Mixed-Signal IC Design, and RF Design. His research focus was in smart-sensor platform design for RF connector applications for the telecommunications industry. During his research, Jean-Jacques developed a passion for the field of RF/microwaves and expanded his knowledge by doing R&D for the telecommunications industry.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.