Image

Digital Techniques Enhance Doherty Amplifier Efficiency

Sept. 1, 2016
Digital correction is effective for improving the efficiency and output power of microwave Doherty power amplifiers.

Doherty amplifiers are widely employed in cellular base stations and other wireless communications systems. Typically, they consist of two parallel amplifiers—one biased for Class AB operation (the carrier amplifier) and the other for Class C bias operation (the peaking amplifier)—along with power splitters and combiners to divide input signals, and then recombine them at the outputs of the two amplifiers.

Though simple in design, these amplifiers suffer from inefficiency due to the different bias schemes for the two amplifier sections. Digital methods have been applied to improve the efficiency, including synthesizing a digitally controlled signal-distribution profile that adaptively distributes the input power between the two amplifiers for less wasted power. Other approaches have involved the use of dual input ports to attempt to drive the two amplifiers closer to saturation and at higher gain levels.

A concern with all efficiency-enhancement methods applied to Doherty power amplifiers is the compromise in linearity due to phase offsets in the signal paths. But as reported by a trio of Canadian authors from the University of Calgary, linearity can be improved while also enhancing efficiency by using some straightforward techniques, including carefully choosing the electrical length of the series transmission lines at the inputs of the two amplifier sections. The phase mismatches in these input transmission lines can result both in nonlinear performance and loss of power and efficiency.

To overcome these performance limitations, the authors developed a demonstrator prototype amplifier that uses a power-indexed lookup table for dynamic phase alignment between the carrier and the peaking amplifiers in a Doherty amplifier. The open-loop approach is executed by applying digital predistortion (DPD) at the input of the peaking amplifier signal path. With DPD, the amplitude-modulation/phase-modulation (AM/PM) response of the peaking amplifier becomes relatively constant. Therefore, any residual phase differences between the two transmission-line paths can be corrected by adding a constant phase shift at the input of the phase-lagging signal path.

The researchers reviewed various Doherty amplifier efficiency-enhancement approaches and found that the adaptive power-distribution approach was suitable for improving efficiency for both narrowband and wideband signal applications. They concluded that with improved and affordable digital-signal-processing (DSP) components, the use of digital techniques can improve output power by as much as 2 dB, and efficiency up to 20%.

See “Doherty Goes Digital,” IEEE Microwave Magazine, Vol. 17, No. 8, August 2016, p. 41.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.